LOJ 6229 LCMGCD (杜教筛+Moebius)

it2022-05-05  169

链接:

https://loj.ac/problem/6229

题意:

\[F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\]

让你求 \(F(n) \bmod1000000007\)

题解:

\(\begin{align} f(n)=\sum_{i=1}^n\frac{lcm(i,n)}{gcd(i,n)}&=\sum_{i=1}^n\frac{n*i}{(i,n)^2}\\ &=\sum_{i=1}^n\sum_{d|n}[(i,n)=d]\frac{n*i}{d^2}\\ &=\sum_{d|n}\sum_{i=1}^{[\frac nd]}[(i,\frac nd)=1]\frac{n*i}d\\ &=\sum_{d|n}d\sum_{i=1}^d[(i,d)=1]*i\\ &=\frac 12(1+\sum_{d|n}d^2\varphi(d)) \end{align}\)

即求 \(\sum_{i=1}^n\sum_{d|i}d^2\varphi(d)=\sum_{i=1}^n\sum_{d=1}^{[\frac ni]}d^2\varphi(d)\)

\(\phi'(n)=\sum_{i=1}^ni^2\varphi(i)\)

因为 \(\sum_{d|n}d^2\varphi(d)*(\frac nd)^2=n^2\sum_{d|n}\varphi(d)=n^3\)

所以,

\(\begin{align} \sum_{i=1}^ni^3=[\frac{n(n+1)}{2}]^2&=\sum_{i=1}^n\sum_{d|i}d^2\varphi(d)*(\frac id)^2\\ &=\sum_{i=1}^ni^2\sum_{d=1}^{[ \frac ni]}d^2\varphi(d)\\ &=\sum_{i=1}^ni^2\phi'([\frac ni]) \end{align}\)

所以得到:\(\phi'(n)=[\frac{n(n+1)}{2}]^2-\sum_{i=2}^ni^2\phi'([\frac ni])\)

可以杜教筛先预处理前 \(n^{2/3}\),原问题可以在复杂度\(O(n^{2/3}log(n))\)内解决。

整合一下,就是:

推公式可以得到( 结合公式4 ):\(ans=\sum_{d=1}^n\sum_{i=1}^{\lfloor{n\over d}\rfloor}\sum_{j=1}^i ij[\gcd(i,j)=1]\)

因为存在恒等式:\(\sum_{i=1}^ni[\gcd(i,n)=1]={[n=1]+n\varphi(n)\over 2}\)

所以有:\(ans={n\over 2}+{1\over 2}\sum_{d=1}^n\sum_{i=1}^{\lfloor{n\over d}\rfloor}i^2\varphi(i)\)

考虑 \(\sum_{i=1}^{n}i^2\varphi(i)\)出现的次数,可以得到: \(ans={n\over 2}+{1\over 2}\sum_{i=1}^ni^2\varphi(i)\lfloor{n\over i}\rfloor\)

其中,\(\sum_{i=1}^ni^2 = \frac{n\cdot(n+1)\cdot(2n+1)}{6}\)\(\varphi(i)\)为欧拉函数。

代码:

#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e6+100; const int mod = 1e9+7; int n; int p[maxn],phi[maxn],pre[maxn]; int inv2,inv6; ll qpower(ll a,ll b,ll mod) { ll res = 1; while(b>0) { if(b&1) res = res * a % mod; b >>= 1; a = a * a % mod; } return res; } void init(int n) { phi[1]=1; for(int i=2;i<=n;i++) { if(p[i]==0) p[++*p]=i,phi[i]=i-1; for(int j=1;j<=*p && 1LL*p[j]*i<=n;j++) { p[p[j]*i]=1; if(i%p[j]) phi[i*p[j]]=phi[i]*phi[p[j]]; else { phi[i*p[j]]=phi[i]*p[j]; break; } } } for(int i=1;i<=n;i++) { pre[i]=(pre[i-1]+1LL*phi[i]*i%mod*i)%mod; } } map<ll,int> mp; int calcinv2(ll l,ll r) { l %= mod; r %= mod; return (r - l + 1) * (l + r) % mod * inv2 % mod; } int calcinv6(ll n) { n %= mod; return n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod; } int calc2(ll l,ll r) { return (calcinv6(r) - calcinv6(l-1) ) % mod; } int calc3(ll n) { return 1LL * calcinv2(1 , n) * calcinv2(1 , n) % mod; } int S(ll n) { if(n <= 1e6) return pre[n]; if(mp.count(n)) return mp[n]; int res = calc3(n); for(ll i = 2, j; i <= n ;i = j + 1) { j = n / (n / i); res = (res - 1LL * calc2(i,j) * S(n / i)) % mod; } return mp[n] = res; } int main(int argc, char const *argv[]) { ll n; std::cin >> n; init(1000000);// 2/3 inv2 = qpower(2,mod-2,mod); inv6 = qpower(6,mod-2,mod); int ans = 0; int last = 0; for(ll i = 1, j; i <= n; i = j + 1) { j = n /( n / i ); int cur = S(j); ans = (ans + 1LL * (cur - last) * ( n / i)) % mod; last = cur; } ans = (ans + n) % mod * inv2 % mod; std::cout << (ans + mod) % mod << '\n'; cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n"; return 0; }

转载于:https://www.cnblogs.com/LzyRapx/p/8459266.html


最新回复(0)