multilayer perceptron(MLP)即多层感知器。可用在颜色分类。
Type of the activation function in the output layer of the MLP. Default value: 'softmax' List of values: 'linear', 'logistic', 'softmax'
softmax必须配合使用classify_image_class_mlp对像素数据进行分类。参数Preprocessing和NumComponents可用于指定特征向量的预处理。参数Preprocessing= 'none',特征向量直接传递给MLP,在并忽略NumComponents。MLP的输出层中激活函数的类型Preprocessing (input_control)Type of preprocessing used to transform the feature vectors. Default value: 'normalization' List of values: 'canonical_variates', 'none', 'normalization', 'principal_components'
normalization特征向量归一化的方法是减去训练向量的均值,再除以训练向量各分量的标准差。因此,变换后的特征向量均值为0,标准差为1。归一化不改变特征向量的长度。忽略NumComponents。如果特征向量的均值和标准差分别与0和1相差很大,或者特征向量的分量在diff中测量的数据也可以使用这种转换。该转换可以使用如果特征向量的平均值和标准偏差明显不同于0和1,或数据的特征向量的分量以不同的单位(例如,如果一些数据灰度值特征和一些区域特性,或者混合区域特性,例如,“循环”(单位:标量)和“区域”(单位:像素的平方))。在这些情况下,训练网络的通常比没有规范化时需要更少的迭代。转换特征向量的预处理类型NumComponents (input_control) Preprocessing parameter: Number of transformed features (ignored for Preprocessing = 'none' and Preprocessing = 'normalization'). Default value: 10 Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 Restriction: NumComponents >= 1预处理参数:转换后的特征数(Preprocessing = 'none'和Preprocessing = 'normalization'时忽略)RandSeed (input_control) Seed value of the random number generator that is used to initialize the MLP with random values. Default value: 42用于用随机值初始化MLP的随机数生成器的种子值MLPHandle (output_control) MLP handle.输出的MLP句柄 add_samples_image_class_mlp (将图像中的训练样本添加到多层感知器的训练数据中) Image (input_object) Training image.训练的图像ClassRegions (input_object) Regions of the classes to be trained.要训练的样本MLPHandle (input_control, state is modified) MLP handle.MLP句柄 train_class_mlp (训练多层感知器). MLPHandle (input_control, state is modified)MLP handle.MLP句柄MaxIterations (input_control) Maximum number of iterations of the optimization algorithm. Default value: 200 Suggested values: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300优化算法的最大迭代次数WeightTolerance (input_control)Threshold for the difference of the weights of the MLP between two iterations of the optimization algorithm. Default value: 1.0 Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001 Restriction: WeightTolerance >= 1.0e-8
阈值为MLP在两次迭代之间进行优化算法的权值之差ErrorTolerance (input_control)Threshold for the difference of the mean error of the MLP on the training data between two iterations of the optimization algorithm. Default value: 0.01 Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001 Restriction: ErrorTolerance >= 1.0e-8阈值为MLP对训练数据的平均误差在两次迭代优化算法之间的差值Error (output_control) Mean error of the MLP on the training data.MLP训练数据的平均误差ErrorLog (output_control) Mean error of the MLP on the training data as a function of the number of iterations of the optimization algorithm.MLP训练数据的平均误差作为优化算法迭代次数的函数 write_class_mlp(保存训练结果) MLPHandle (input_control) MLP handle.MLP句柄FileName (input_control) File name. File extension: .gmc文件路径 clear_class_mlp (删除多层感知器) MLPHandle (input_control, state is modified) MLP handle.MLP句柄 read_class_mlp(读取训练结果) FileName (input_control) File name. File extension: .gmc文件路径MLPHandle (output_control) MLP handle.MLP句柄 classify_image_class_mlp (用多层感知器对图像进行分类) Image (input_object)Input image.图像ClassRegions (output_object) Segmented classes.输出的检测结果MLPHandle (input_control) MLP handle.MLP句柄RejectionThreshold (input_control)Threshold for the rejection of the classification. Default value: 0.5 Suggested values: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 Restriction: (RejectionThreshold >= 0.0) && (RejectionThreshold <= 1.0)
抛弃种类的阈值
搜集数据