torch.cat() 函数用法

it2022-05-05  204

torch.cat是将两个张量(tensor)拼接在一起,cat是concatnate的意思,即拼接,联系在一起。

使用torch.cat((A,B),dim)时,除拼接维数dim数值可不同外其余维数数值需相同,方能对齐。 C = torch.cat( (A,B),0 ) #按维数0拼接(竖着拼) C = torch.cat( (A,B),1 ) #按维数1拼接(横着拼) >>> import torch >>> A=torch.ones(2,3) #2x3的张量(矩阵) >>> A tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> B=2*torch.ones(4,3)#4x3的张量(矩阵) >>> B tensor([[ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.]]) >>> C=torch.cat((A,B),0)#按维数0(行)拼接 >>> C tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.]]) >>> C.size() torch.Size([6, 3]) >>> D=2*torch.ones(2,4) #2x4的张量(矩阵) >>> C=torch.cat((A,D),1)#按维数1(列)拼接 >>> C tensor([[ 1., 1., 1., 2., 2., 2., 2.], [ 1., 1., 1., 2., 2., 2., 2.]]) >>> C.size() torch.Size([2, 7])

最新回复(0)