Jack Straws
 
 
 Time Limit: 1000MS Memory Limit: 10000K
  
  
   Total Submissions: 5865 Accepted: 2678
    
   
  
 
Description
 
In the game of Jack Straws, a number of plastic or wooden “straws” are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.
 
Input
 
Input consist multiple case,each case consists of multiple lines. The first line will be an integer 
    
     
      
       
        n
       
       
        (
       
       
        1
       
       
        <
       
       
        n
       
       
        <
       
       
        13
       
       
        )
       
      
      
       n (1 < n < 13)
      
     
    n(1<n<13) giving the number of straws on the table. Each of the next 
    
     
      
       
        n
       
      
      
       n
      
     
    n lines contain 
    
     
      
       
        4
       
      
      
       4
      
     
    4 positive integers,
    
     
      
       
        
         x
        
        
         1
        
       
       
        ,
       
       
        
         y
        
        
         1
        
       
       
        ,
       
       
        
         x
        
        
         2
        
       
      
      
       x_1,y_1,x_2
      
     
    x1,y1,x2 and 
    
     
      
       
        
         y
        
        
         2
        
       
      
      
       y_2
      
     
    y2, giving the coordinates, 
    
     
      
       
        (
       
       
        
         x
        
        
         1
        
       
       
        ,
       
       
        
         y
        
        
         1
        
       
       
        )
       
       
        ,
       
       
        (
       
       
        
         x
        
        
         2
        
       
       
        ,
       
       
        
         y
        
        
         2
        
       
       
        )
       
      
      
       (x_1,y_1),(x_2,y_2)
      
     
    (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 
    
     
      
       
        100
       
      
      
       100
      
     
    100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 
    
     
      
       
        1
       
      
      
       1
      
     
    1 and 
    
     
      
       
        n
       
      
      
       n
      
     
    n, inclusive. You are to determine if straw a can be connected to straw b. When 
    
     
      
       
        a
       
       
        =
       
       
        0
       
       
        =
       
       
        b
       
      
      
       a = 0 = b
      
     
    a=0=b, the current case is terminated.
 
When 
    
     
      
       
        n
       
       
        =
       
       
        0
       
      
      
       n=0
      
     
    n=0,the input is terminated.
 
There will be no illegal input and there are no zero-length straws.
 
Output
 
You should generate a line of output for each line containing a pair 
    
     
      
       
        a
       
      
      
       a
      
     
    a and 
    
     
      
       
        b
       
      
      
       b
      
     
    b, except the final line where 
    
     
      
       
        a
       
       
        =
       
       
        0
       
       
        =
       
       
        b
       
      
      
       a = 0 = b
      
     
    a=0=b. The line should say simply “CONNECTED”, if straw a is connected to straw b, or “NOT CONNECTED”, if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.
 
Sample Input
 
7
1 6 3 3 
4 6 4 9 
4 5 6 7 
1 4 3 5 
3 5 5 5 
5 2 6 3 
5 4 7 2 
1 4 
1 6 
3 3 
6 7 
2 3 
1 3 
0 0
2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0
0
 
Sample Output
 
CONNECTED 
NOT CONNECTED 
CONNECTED 
CONNECTED 
NOT CONNECTED 
CONNECTED
CONNECTED
CONNECTED
CONNECTED
 
Source
 
East Central North America 1994
 
题意
 
就是给你一些线段,然后问某两个是否相交或间接相交 
题解
 
暴力判断任意两个之间是否相交,并查集维护一下就行了具体写法详见代码 
代码
 
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std
;
namespace IO
{ 
    #define BUF_SIZE 100000 
    #define OUT_SIZE 100000 
    #define ll long long 
    bool IOerror
=0; 
    inline char nc(){ 
        static char buf
[BUF_SIZE
],*p1
=buf
+BUF_SIZE
,*pend
=buf
+BUF_SIZE
; 
        if (p1
==pend
){ 
            p1
=buf
; pend
=buf
+fread(buf
,1,BUF_SIZE
,stdin); 
            if (pend
==p1
){IOerror
=1;return -1;} 
        } 
        return *p1
++; 
    } 
    inline bool 
blank(char ch
){return ch
==' '||ch
=='\n'||ch
=='\r'||ch
=='\t';} 
    inline bool 
read(int &x
){ 
        bool sign
=0; char ch
=nc(); x
=0; 
        for (;blank(ch
);ch
=nc()); 
        if (IOerror
) return false
; 
        if (ch
=='-')sign
=1,ch
=nc(); 
        for (;ch
>='0'&&ch
<='9';ch
=nc())x
=x
*10+ch
-'0'; 
        if (sign
)x
=-x
; return true
;
    } 
    inline void read(ll 
&x
){ 
        bool sign
=0; char ch
=nc(); x
=0; 
        for (;blank(ch
);ch
=nc()); 
        if (IOerror
)return; 
        if (ch
=='-')sign
=1,ch
=nc(); 
        for (;ch
>='0'&&ch
<='9';ch
=nc())x
=x
*10+ch
-'0'; 
        if (sign
)x
=-x
; 
    } 
    inline void read(double &x
){ 
        bool sign
=0; char ch
=nc(); x
=0; 
        for (;blank(ch
);ch
=nc()); 
        if (IOerror
)return; 
        if (ch
=='-')sign
=1,ch
=nc(); 
        for (;ch
>='0'&&ch
<='9';ch
=nc())x
=x
*10+ch
-'0'; 
        if (ch
=='.'){ 
            double tmp
=1; ch
=nc(); 
            for (;ch
>='0'&&ch
<='9';ch
=nc())tmp
/=10.0,x
+=tmp
*(ch
-'0'); 
        } 
        if (sign
)x
=-x
; 
    } 
    inline void read(char *s
){ 
        char ch
=nc(); 
        for (;blank(ch
);ch
=nc()); 
        if (IOerror
)return; 
        for (;!blank(ch
)&&!IOerror
;ch
=nc())*s
++=ch
; 
        *s
=0; 
    } 
    inline void read(char &c
){ 
        for (c
=nc();blank(c
);c
=nc()); 
        if (IOerror
){c
=-1;return;} 
    } 
    
    struct Ostream_fwrite
{ 
        char *buf
,*p1
,*pend
; 
        Ostream_fwrite(){buf
=new 
char[BUF_SIZE
];p1
=buf
;pend
=buf
+BUF_SIZE
;} 
        void out(char ch
){ 
            if (p1
==pend
){ 
                fwrite(buf
,1,BUF_SIZE
,stdout);p1
=buf
; 
            } 
            *p1
++=ch
; 
        } 
        void print(int x
){ 
            static char s
[15],*s1
;s1
=s
; 
            if (!x
)*s1
++='0';if (x
<0)out('-'),x
=-x
; 
            while(x
)*s1
++=x
%10+'0',x
/=10; 
            while(s1
--!=s
)out(*s1
); 
        } 
        void println(int x
){ 
            static char s
[15],*s1
;s1
=s
; 
            if (!x
)*s1
++='0';if (x
<0)out('-'),x
=-x
; 
            while(x
)*s1
++=x
%10+'0',x
/=10; 
            while(s1
--!=s
)out(*s1
); out('\n'); 
        } 
        void print(ll x
){ 
            static char s
[25],*s1
;s1
=s
; 
            if (!x
)*s1
++='0';if (x
<0)out('-'),x
=-x
; 
            while(x
)*s1
++=x
%10+'0',x
/=10; 
            while(s1
--!=s
)out(*s1
); 
        } 
        void println(ll x
){ 
            static char s
[25],*s1
;s1
=s
; 
            if (!x
)*s1
++='0';if (x
<0)out('-'),x
=-x
; 
            while(x
)*s1
++=x
%10+'0',x
/=10; 
            while(s1
--!=s
)out(*s1
); out('\n'); 
        } 
        void print(double x
,int y
){ 
            static ll mul
[]={1,10,100,1000,10000,100000,1000000,10000000,100000000, 
                1000000000,10000000000LL,100000000000LL,1000000000000LL,10000000000000LL, 
                100000000000000LL,1000000000000000LL,10000000000000000LL,100000000000000000LL}; 
            if (x
<-1e-12)out('-'),x
=-x
;x
*=mul
[y
]; 
            ll x1
=(ll
)floor(x
); if (x
-floor(x
)>=0.5)++x1
; 
            ll x2
=x1
/mul
[y
],x3
=x1
-x2
*mul
[y
]; print(x2
); 
            if (y
>0){out('.'); for (size_t i
=1;i
<y
&&x3
*mul
[i
]<mul
[y
];out('0'),++i
) {}; print(x3
);} 
        } 
        void println(double x
,int y
){print(x
,y
);out('\n');} 
        void print(char *s
){while (*s
)out(*s
++);} 
        void println(char *s
){while (*s
)out(*s
++);out('\n');} 
        void flush(){if (p1
!=buf
){fwrite(buf
,1,p1
-buf
,stdout);p1
=buf
;}} 
        ~Ostream_fwrite(){flush();} 
    }Ostream
; 
    inline void print(int x
){Ostream
.print(x
);} 
    inline void println(int x
){Ostream
.println(x
);} 
    inline void print(char x
){Ostream
.out(x
);} 
    inline void println(char x
){Ostream
.out(x
);Ostream
.out('\n');} 
    inline void print(ll x
){Ostream
.print(x
);} 
    inline void println(ll x
){Ostream
.println(x
);} 
    inline void print(double x
,int y
){Ostream
.print(x
,y
);} 
    inline void println(double x
,int y
){Ostream
.println(x
,y
);} 
    inline void print(char *s
){Ostream
.print(s
);} 
    inline void println(char *s
){Ostream
.println(s
);} 
    inline void println(){Ostream
.out('\n');} 
    inline void flush(){Ostream
.flush();}
    #undef ll 
    #undef OUT_SIZE 
    #undef BUF_SIZE 
};
using namespace IO
;
const int maxn
=20;
const double eps
=1e-10;
struct point
{  
	double x
,y
;
	point(double a
=0,double b
=0) {
		x
=a
;y
=b
;
	} 
	point operator
+(point other
) {
		return point(x
+other
.x
,y
+other
.y
);
	}
	point operator
-(point other
) {
		return point(x
-other
.x
,y
-other
.y
);
	}
	point operator
*(double k
) {
		return point(x
*k
,y
*k
);
	}
	double dot(point other
) { 
		return x
*other
.x
+y
*other
.y
;
	}
	double cha(point other
) { 
		return x
*other
.y
-y
*other
.x
;
	}
	bool 
onseg(point p1
,point p2
) {
		point q
=*this
;
		return fabs((p1
-q
).cha(p2
-q
))<=eps
&&(p1
-q
).dot(p2
-q
)<=0;
	}
	friend point 
intersect(point p1
,point p2
,point q1
,point q2
) {
		return p1
+(p2
-p1
)*((q2
-q1
).cha(q1
-p1
)/(q2
-q1
).cha(p2
-p1
));
	}
	friend bool 
parallel(point p1
,point p2
,point q1
,point q2
) { 
		return fabs((q2
-q1
).cha(p2
-p1
))<=eps
;
	}
	friend bool 
parallel_intersect(point p1
,point p2
,point q1
,point q2
) { 
		return p1
.onseg(q1
,q2
)||p2
.onseg(q1
,q2
)||q1
.onseg(p1
,p2
)||q2
.onseg(p1
,p2
);
	}
	void print() {
		printf("x:%.3lf  y:%.3lf\n",x
,y
);
	}
}p
[maxn
][2];
int n
,connect
[maxn
][maxn
];
struct dsu
{
	int fa
[maxn
],rank
[maxn
];
	void init(int k
){
		for(int i
=1;i
<=k
;i
++) fa
[i
]=i
,rank
[i
]=0;
	}
	int fin(int k
){
		return fa
[k
]==k
?k
:(fa
[k
]=fin(fa
[k
]));
	}
	
	void unite(int a
,int b
){
		int x
=fin(a
),y
=fin(b
);
		if(x
==y
) return;
		if(rank
[x
]<rank
[y
]) 
		fa
[x
]=y
;
		else{
			fa
[y
]=x
;
			if(rank
[x
]==rank
[y
]) rank
[x
]++;
		}
	}
	
	bool 
same(int a
,int b
){
		return fin(a
)==fin(b
);
	}
}tree
;
int main()
{
	
	while(read(n
)&&n
){
		memset(connect
,0,sizeof(connect
));tree
.init(n
);
		for(int i
=1;i
<=n
;i
++) for(int j
=0;j
<=1;j
++) read(p
[i
][j
].x
),read(p
[i
][j
].y
);
		for(int i
=1;i
<=n
;i
++) for(int j
=i
+1;j
<=n
;j
++) {
			if(parallel(p
[i
][0],p
[i
][1],p
[j
][0],p
[j
][1])) {if(parallel_intersect(p
[i
][0],p
[i
][1],p
[j
][0],p
[j
][1])) connect
[i
][j
]=1;}
			else {
				point inter
=intersect(p
[i
][0],p
[i
][1],p
[j
][0],p
[j
][1]);
				if(inter
.onseg(p
[i
][0],p
[i
][1])&&inter
.onseg(p
[j
][0],p
[j
][1])) connect
[i
][j
]=1;
			}
		}
		for(int i
=1;i
<=n
;i
++) for(int j
=i
+1;j
<=n
;j
++) if(connect
[i
][j
]) tree
.unite(i
,j
);
		int u
,v
;
		while(read(u
)&&read(v
)&&u
)  printf(tree
.same(u
,v
)?"CONNECTED\n":"NOT CONNECTED\n");
	}
}