linux中的多线程

it2022-05-05  119

线程概念

什么是线程(面试必考)

(1)进程

进程是程序的一次执行过程,是一个动态概念,是程序在执行过程中分配和管理资源的基本单位,每一个进程都有一个自己的地址空间,至少有 5 种基本状态,它们是:初始态,执行态,等待状态,就绪状态,终止状态。

(2)线程

线程是CPU调度和分派的基本单位,它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

(3)联系

线程是进程的一部分,一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。

(4)区别:理解它们的差别,我从资源使用的角度出发。(所谓的资源就是计算机里的中央处理器,内存,文件,网络等等) LWP:light weight process 轻量级的进程,本质仍是进程(在Linux环境下) 进程:独立地址空间,拥有PCB 线程:也有PCB,但没有独立的地址空间(共享) 区别:在于是否共享地址空间。 独居(进程),不能共享内存!!!;合租(线程)。

Linux内核线程实现原理

类Unix系统中,早期是没有“线程”概念的,80年代才引入,借助进程机制实现出了线程的概念。因此在这类系统中,进程和线程关系密切。

轻量级进程(light-weight process),也有PCB,创建线程使用的底层函数和进程一样,都是clone从内核里看进程和线程是一样的,都有各自不同的PCB,但是PCB中指向内存资源的三级页表是相同的进程可以蜕变成线程线程可看做寄存器和栈的集合在linux下,线程最是小的执行单位;进程是最小的分配资源单位 察看LWP号:ps –Lf pid 查看指定线程的lwp号。

线程控制原语

pthread_self函数

获取线程ID。其作用对应进程中 getpid() 函数。

pthread_t pthread_self(void); 返回值:成功:0; 失败:无! 线程ID:pthread_t类型,本质:在Linux下为无符号整数(%lu),其他系统中可能是结构体实现 线程ID是进程内部,识别标志。(两个进程间,线程ID允许相同) 注意:不应使用全局变量 pthread_t tid,在子线程中通过pthread_create传出参数来获取线程ID,而应使用pthread_self。

pthread_create函数

创建一个新线程。 其作用,对应进程中fork() 函数。

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,void *(*start_routine) (void *), void *arg);

返回值:成功:0; 失败:错误号 -----Linux环境下,所有线程特点,失败均直接返回错误号。 参数: pthread_t:当前Linux中可理解为:typedef unsigned long int pthread_t; 参数1:传出参数,保存系统为我们分配好的线程ID 参数2:通常传NULL,表示使用线程默认属性。若想使用具体属性也可以修改该参数。 参数3:函数指针,指向线程主函数(线程体),该函数运行结束,则线程结束。 参数4:线程主函数执行期间所使用的参数。

【练习】:创建一个新线程,打印线程ID。注意:链接线程库 -lpthread

#include <stdio.h> #include <pthread.h> #include <unistd.h> void *tfn(void *arg) { printf("I'm thread, Thread_ID = %lu\n", pthread_self()); return NULL; } int main(void) { pthread_t tid; pthread_create(&tid, NULL, tfn, NULL); sleep(1); printf("I am main, my pid = %d\n", getpid()); return 0; }

【练习】:循环创建多个线程,每个线程打印自己是第几个被创建的线程。(类似于进程循环创建子进程)

#include <pthread.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> void *tfn(void *arg) { int i; i = (int)arg; sleep(i); //通过i来区别每个线程 printf("I'm %dth thread, Thread_ID = %lu\n", i+1, pthread_self()); return NULL; } int main(int argc, char *argv[]) { int n = 5, i; pthread_t tid; if (argc == 2) n = atoi(argv[1]); for (i = 0; i < n; i++) { pthread_create(&tid, NULL, tfn, (void *)i); //将i转换为指针,在tfn中再强转回整形。 } sleep(n); printf("I am main, and I am not a process, I'm a thread!\n" "main_thread_ID = %lu\n", pthread_self()); return 0; }

线程与共享

线程间共享全局变量! 【牢记】:线程默认共享数据段、代码段等地址空间,常用的是全局变量。而进程不共享全局变量,只能借助mmap。

#include <stdio.h> #include <pthread.h> #include <stdlib.h> #include <unistd.h> int var = 100; void *tfn(void *arg) { var = 200; printf("thread\n"); return NULL; } int main(void) { printf("At first var = %d\n", var); pthread_t tid; pthread_create(&tid, NULL, tfn, NULL); sleep(1); printf("after pthread_create, var = %d\n", var); return 0; }

pthread_exit函数

将单个线程退出

void pthread_exit(void *retval); 参数:retval表示线程退出状态,通常传NULL

思考:使用exit(0)将指定线程退出,可以吗?

#include <pthread.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> void *tfn(void *arg) { int i; i = (int)arg; //强转。 //使用pthread_exit(NULL),退出当前线程不会影响其他线程运行。 //使用exit(0)退出整个进程,所有线程都会退出 if (i == 4) pthread_exit(NULL); sleep(10); //通过i来区别每个线程 printf("I'm %dth thread, Thread_ID = %lu\n", i+1, pthread_self()); return NULL; } int main(int argc, char *argv[]) { int n = 5, i; pthread_t tid; if (argc == 2) n = atoi(argv[1]); for (i = 0; i < n; i++) { pthread_create(&tid, NULL, tfn, (void *)i); //将i转换为指针,在tfn中再强转回整形。 } sleep(1); printf("I am main, I'm a thread!\n" "main_thread_ID = %lu\n", pthread_self()); return 0; }

结论:线程中,禁止使用exit函数,会导致进程内所有线程全部退出。 在不添加sleep控制输出顺序的情况下。pthread_create在循环中,几乎瞬间创建5个线程,但只有第1个线程有机会输出(或者第2个也有,也可能没有,取决于内核调度)如果第3个线程执行了exit,将整个进程退出了,所以全部线程退出了。 所以,多线程环境中,应尽量少用,或者不使用exit函数,取而代之使用pthread_exit函数,将单个线程退出。任何线程里exit导致进程退出,其他线程未工作结束,主控线程退出时不能return或exit(0)[主线程中return和exit的效果一样]。 另注意,pthread_exit或者return返回的指针所指向的内存单元必须是全局的或者是用malloc分配的,不能在线程函数的栈上分配,因为当其它线程得到这个返回指针时线程函数已经退出了,所以一般使用NULL。

pthread_join函数

阻塞等待线程退出,获取线程退出状态 其作用,对应进程中 waitpid() 函数。

int pthread_join(pthread_t thread, void **retval);

成功:0;失败:错误号 参数:thread:线程ID (【注意】:不是指针);retval:存储线程结束状态。 对比记忆: 进程中:main返回值、exit参数–>int;等待子进程结束 wait 函数参数–>int * 线程中:线程主函数返回值、pthread_exit–>void *;等待线程结束 pthread_join 函数参数–>void **

#include <stdio.h> #include <unistd.h> #include <pthread.h> #include <stdlib.h> typedef struct { int a; int b; } exit_t; void *tfn(void *arg) { exit_t *ret; ret = (exit_t *)malloc(sizeof(exit_t)); ret->a = 100; ret->b = 300; pthread_exit((void *)ret); } int main(void) { pthread_t tid; exit_t *retval; pthread_create(&tid, NULL, tfn, NULL); /*调用pthread_join可以获取线程的退出状态*/ pthread_join(tid, (void **)&retval); //wait(&status); printf("a = %d, b = %d \n", retval->a, retval->b); return 0; }

调用该函数的线程将挂起等待,直到id为thread的线程终止。thread线程以不同的方法终止,通过pthread_join得到的终止状态是不同的,总结如下:

如果thread线程通过return返回,retval所指向的单元里存放的是thread线程函数的返回值。如果thread线程被别的线程调用pthread_cancel异常终止掉,retval所指向的单元里存放的是常数PTHREAD_CANCELED。如果thread线程是自己调用pthread_exit终止的,retval所指向的单元存放的是传给pthread_exit的参数。如果对thread线程的终止状态不感兴趣,可以传NULL给retval参数。 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <pthread.h> int var = 100; void *tfn(void *arg) { int i; i = (int)arg; sleep(i); if (i == 1) { var = 333; printf("var = %d\n", var); return (void *)var; } else if (i == 3) { var = 777; printf("I'm %dth pthread, pthread_id = %lu\n var = %d\n", i+1, pthread_self(), var); pthread_exit((void *)var); } else { printf("I'm %dth pthread, pthread_id = %lu\n var = %d\n", i+1, pthread_self(), var); pthread_exit((void *)var); } return NULL; } int main(void) { pthread_t tid[5]; int i; int *ret[5]; for (i = 0; i < 5; i++) pthread_create(&tid[i], NULL, tfn, (void *)i); for (i = 0; i < 5; i++) { pthread_join(tid[i], (void **)&ret[i]); printf("-------%d 's ret = %d\n", i, (int)ret[i]); } printf("I'm main pthread tid = %lu\t var = %d\n", pthread_self(), var); sleep(i); return 0; }

pthread_detach函数

实现线程分离

int pthread_detach(pthread_t thread);

成功:0;失败:错误号 线程分离状态:指定该状态,线程主动与主控线程断开关系。线程结束后,其退出状态不由其他线程获取,而直接自己自动释放。网络、多线程服务器常用。 进程若有该机制,将不会产生僵尸进程。僵尸进程的产生主要由于进程死后,大部分资源被释放,一点残留资源仍存于系统中,导致内核认为该进程仍存在。 也可使用 pthread_create函数参2(线程属性)来设置线程分离。 下面程序是使用pthread_detach分离线程,#if 1是通过线程的属性分离

#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <pthread.h> void *tfn(void *arg) { int n = 3; while (n--) { printf("thread count %d\n", n); sleep(1); } //return (void *)1; pthread_exit((void *)1); } int main(void) { pthread_t tid; void *tret; int err; #if 0 pthread_attr_t attr; /*通过线程属性来设置游离态*/ pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); pthread_create(&tid, &attr, tfn, NULL); #else pthread_create(&tid, NULL, tfn, NULL); pthread_detach(tid); //让线程分离 ----自动退出,无系统残留资源 #endif //主线程不能结束,如果主线程结束了,即使分离了主线程和子线程,子线程也会随着主线程销毁而销毁 while (1) { err = pthread_join(tid, &tret); printf("-------------err= %d\n", err); if (err != 0) fprintf(stderr, "thread_join error: %s\n", strerror(err)); else fprintf(stderr, "thread exit code %d\n", (int)tret); sleep(1); } return 0; }

-------------err= 3 thread_join error: No such process thread count 2 -------------err= 3 thread count 1 thread_join error: No such process thread count 0 -------------err= 3 thread_join error: No such process -------------err= 3 thread_join error: No such process -------------err= 3 thread_join error: No such process -------------err= 3 thread_join error: No such process -------------err= 3 thread_join error: No such process -------------err= 3 thread_join error: No such process -------------err= 3 thread_join error: No such process -------------err= 3 thread_join error: No such process

pthread_cancel函数

杀死(取消)线程 其作用,对应进程中 kill() 函数。

int pthread_cancel(pthread_t thread); 成功:0;失败:错误号

【注意】:线程的取消并不是实时的,而有一定的延时。需要等待线程到达某个取消点(检查点)。 类似于玩游戏存档,必须到达指定的场所(存档点,如:客栈、仓库、城里等)才能存储进度。杀死线程也不是立刻就能完成,必须要到达取消点。 取消点:是线程检查是否被取消,并按请求进行动作的一个位置。通常是一些系统调用creat,open,pause,close,read,write… 执行命令man 7 pthreads可以查看具备这些取消点的系统调用列表。也可参阅 APUE.12.7 取消选项小节。 可粗略认为一个系统调用(进入内核)即为一个取消点。如线程中没有取消点,可以通过调用pthreestcancel函数自行设置一个取消点。 被取消的线程, 退出值定义在Linux的pthread库中。常数PTHREAD_CANCELED的值是-1。可在头文件pthread.h中找到它的定义:#define PTHREAD_CANCELED ((void *) -1)。因此当我们对一个已经被取消的线程使用pthread_join回收时,得到的返回值为-1。


【练习】:终止线程的三种方法。注意“取消点”的概念。

终止线程方式

总结:终止某个线程而不终止整个进程,有三种方法:

从线程主函数return。这种方法对主控线程不适用,从main函数return相当于调用exit。一个线程可以调用pthread_cancel终止同一进程中的另一个线程。线程可以调用pthread_exit终止自己。 #include <stdio.h> #include <unistd.h> #include <pthread.h> #include <stdlib.h> void *tfn1(void *arg) { printf("thread 1 returning\n"); return (void *)111; } void *tfn2(void *arg) { printf("thread 2 exiting\n"); pthread_exit((void *)222); } void *tfn3(void *arg) { while (1) { //printf("thread 3: I'm going to die in 3 seconds ...\n"); //sleep(1); pthread_testcancel(); //自己添加取消点*/ } return (void *)666; } int main(void) { pthread_t tid; void *tret = NULL; pthread_create(&tid, NULL, tfn1, NULL); pthread_join(tid, &tret); printf("thread 1 exit code = %d\n\n", (int)tret); pthread_create(&tid, NULL, tfn2, NULL); pthread_join(tid, &tret); printf("thread 2 exit code = %d\n\n", (int)tret); pthread_create(&tid, NULL, tfn3, NULL); sleep(3); pthread_cancel(tid); pthread_join(tid, &tret); printf("thread 3 exit code = %d\n", (int)tret); return 0; }

thread 1 returning thread 1 exit code = 111 thread 2 exiting thread 2 exit code = 222 thread 3 exit code = -559038737

pthread_equal函数

比较两个线程ID是否相等。

int pthread_equal(pthread_t t1, pthread_t t2); 有可能Linux在未来线程ID pthread_t 类型被修改为结构体实现。 控制原语对比 进程 线程 fork pthread_create exit pthread_exit wait pthread_join kill pthread_cancel getpid pthread_self 命名空间

线程属性

本节作为指引性介绍,linux下线程的属性是可以根据实际项目需要,进行设置,之前我们讨论的线程都是采用线程的默认属性,默认属性已经可以解决绝大多数开发时遇到的问题。如我们对程序的性能提出更高的要求那么需要设置线程属性,比如可以通过设置线程栈的大小来降低内存的使用,增加最大线程个数。

typedef struct { int etachstate; //线程的分离状态 int schedpolicy; //线程调度策略 struct sched_param schedparam; //线程的调度参数 int inheritsched; //线程的继承性 int scope; //线程的作用域 size_t guardsize; //线程栈末尾的警戒缓冲区大小 int stackaddr_set; //线程的栈设置 void* stackaddr; //线程栈的位置 size_t stacksize; //线程栈的大小 } pthread_attr_t;

主要结构体成员: 1. 线程分离状态 2. 线程栈大小(默认平均分配) 3. 线程栈警戒缓冲区大小(位于栈末尾) APUE.12.3 线程属性 属性值不能直接设置,须使用相关函数进行操作,初始化的函数为pthread_attr_init,这个函数必须在pthread_create函数之前调用。之后须用pthread_attr_destroy函数来释放资源。 线程属性主要包括如下属性:作用域(scope)、栈尺寸(stack size)、栈地址(stack address)、优先级(priority)、分离的状态(detached state)、调度策略和参数(scheduling policy and parameters)。默认的属性为非绑定、非分离、缺省的堆栈、与父进程同样级别的优先级。

线程属性初始化

注意:应先初始化线程属性,再pthread_create创建线程 初始化线程属性

int pthread_attr_init(pthread_attr_t *attr); 成功:0;失败:错误号

销毁线程属性所占用的资源

int pthread_attr_destroy(pthread_attr_t *attr); 成功:0;失败:错误号

线程的分离状态

线程的分离状态决定一个线程以什么样的方式来终止自己。 非分离状态:线程的默认属性是非分离状态,这种情况下,原有的线程等待创建的线程结束。只有当pthread_join()函数返回时,创建的线程才算终止,才能释放自己占用的系统资源。 分离状态:分离线程没有被其他的线程所等待,自己运行结束了,线程也就终止了,马上释放系统资源。应该根据自己的需要,选择适当的分离状态。 线程分离状态的函数: 设置线程属性,分离or非分离

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

获取程属性,分离or非分离

int pthread_attr_getdetachstate(pthread_attr_t *attr, int *detachstate); 参数:attr:已初始化的线程属性 detachstate: PTHREAD_CREATE_DETACHED(分离线程) PTHREAD _CREATE_JOINABLE(非分离线程)

这里要注意的一点是,如果设置一个线程为分离线程,而这个线程运行又非常快,它很可能在pthread_create函数返回之前就终止了,它终止以后就可能将线程号和系统资源移交给其他的线程使用,这样调用pthread_create的线程就得到了错误的线程号。要避免这种情况可以采取一定的同步措施,最简单的方法之一是可以在被创建的线程里调用pthread_cond_timedwait函数,让这个线程等待一会儿,留出足够的时间让函数pthread_create返回。设置一段等待时间,是在多线程编程里常用的方法。但是注意不要使用诸如wait()之类的函数,它们是使整个进程睡眠,并不能解决线程同步的问题。

线程的栈地址

POSIX.1定义了两个常量_POSIX_THREAD_ATTR_STACKADDR 和_POSIX_THREAD_ATTR_STACKSIZE检测系统是否支持栈属性。也可以给sysconf函数传递_SC_THREAD_ATTR_STACKADDR或 _SC_THREAD_ATTR_STACKSIZE来进行检测。 当进程栈地址空间不够用时,指定新建线程使用由malloc分配的空间作为自己的栈空间。通过pthread_attr_setstack和pthread_attr_getstack两个函数分别设置和获取线程的栈地址。

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr, size_t stacksize); 成功:0;失败:错误号 int pthread_attr_getstack(pthread_attr_t *attr, void **stackaddr, size_t *stacksize); 成功:0;失败:错误号 参数: attr:指向一个线程属性的指针 stackaddr:返回获取的栈地址 stacksize:返回获取的栈大小

线程的栈大小

当系统中有很多线程时,可能需要减小每个线程栈的默认大小,防止进程的地址空间不够用,当线程调用的函数会分配很大的局部变量或者函数调用层次很深时,可能需要增大线程栈的默认大小。 函数pthread_attr_getstacksize和 pthread_attr_setstacksize提供设置。

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize); 成功:0;失败:错误号 int pthread_attr_getstacksize(pthread_attr_t *attr, size_t *stacksize); 成功:0;失败:错误号 参数: attr:指向一个线程属性的指针 stacksize:返回线程的堆栈大小 线程属性控制示例

线程属性控制示例

#include <stdio.h> #include <pthread.h> #include <string.h> #include <stdlib.h> #include <unistd.h> #define SIZE 0x10000 void *th_fun(void *arg) { while (1) sleep(1); } int main(void) { pthread_t tid; int err, detachstate, i = 1; pthread_attr_t attr; size_t stacksize; //typedef size_t unsigned int void *stackaddr; pthread_attr_init(&attr); pthread_attr_getstack(&attr, &stackaddr, &stacksize); pthread_attr_getdetachstate(&attr, &detachstate); if (detachstate == PTHREAD_CREATE_DETACHED) //默认是分离态 printf("thread detached\n"); else if (detachstate == PTHREAD_CREATE_JOINABLE) //默认时非分离 printf("thread join\n"); else printf("thread un known\n"); /* 设置线程分离属性 */ pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); while (1) { /* 在堆上申请内存,指定线程栈的起始地址和大小 */ stackaddr = malloc(SIZE); if (stackaddr == NULL) { perror("malloc"); exit(1); } stacksize = SIZE; pthread_attr_setstack(&attr, stackaddr, stacksize); //借助线程的属性,修改线程栈空间大小 err = pthread_create(&tid, &attr, th_fun, NULL); if (err != 0) { printf("%s\n", strerror(err)); exit(1); } printf("%d\n", i++); } pthread_attr_destroy(&attr); return 0; }

NPTL

1.察看当前pthread库版本getconf GNU_LIBPTHREAD_VERSION 2.NPTL实现机制(POSIX),Native POSIX Thread Library 3.使用线程库时gcc指定 –lpthread

线程使用注意事项

主线程退出其他线程不退出,主线程应调用pthread_exit避免僵尸线程 pthread_join pthread_detach pthread_create指定分离属性 被join线程可能在join函数返回前就释放完自己的所有内存资源,所以不应当返回被回收线程栈中的值;malloc和mmap申请的内存可以被其他线程释放应避免在多线程模型中调用fork除非,马上exec,子进程中只有调用fork的线程存在,其他线程在子进程中均pthread_exit信号的复杂语义很难和多线程共存,应避免在多线程引入信号机制

最新回复(0)