Java面试知识点(四十六)HashMap源码解析

it2022-05-05  113

概览

HashMap在Map.Entry静态内部类实现中存储key-value对。HashMap使用哈希算法,在put和get方法中,它使用hashCode()和equals()方法。当我们通过传递key-value对调用put方法的时候,HashMap使用Key hashCode()和哈希算法来找出存储key-value对的索引。Entry存储在LinkedList中,所以如果存在entry,它使用equals()方法来检查传递的key是否已经存在,如果存在,它会覆盖value,如果不存在,它会创建一个新的entry然后保存。当我们通过传递key调用get方法时,它再次使用hashCode()来找到数组中的索引,然后使用equals()方法找出正确的Entry,然后返回它的值。

其它关于HashMap比较重要的问题是容量、负荷系数和阀值调整。HashMap默认的初始容量是16,负荷系数是0.75。阀值是为负荷系数乘以容量,无论何时我们尝试添加一个entry,如果map的大小比阀值大的时候,HashMap会对map的内容进行重新哈希,且使用更大的容量。容量总是2的幂,所以如果你知道你需要存储大量的key-value对,比如缓存从数据库里面拉取的数据,使用正确的容量和负荷系数对HashMap进行初始化是个不错的做法。


1.JDK1.8 引入红黑树

在 JDK1.6,JDK1.7 中,HashMap 采用位桶 + 链表实现,即使用链表处理冲突,同一 hash 值的链表都存储在一个链表里。但是当位于一个桶中的元素较多,即 hash 值相等的元素较多时,通过 key 值依次查找的效率较低。而 JDK1.8 中,HashMap 采用位桶 + 链表 + 红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。


2.HashMap 的实现原理:

首先有一个每个元素都是链表(可能表述不准确)的数组,当添加一个元素(key-value)时,就首先计算元素 key 的 hash 值,以此确定插入数组中的位置,但是可能存在同一 hash 值的元素已经被放在数组同一位置了,这时就添加到同一 hash 值的元素的后面,他们在数组的同一位置,但是形成了链表,同一各链表上的 Hash 值是相同的,所以说数组存放的是链表。而当链表长度太长时,链表就转换为红黑树,这样大大提高了查找的效率。

当链表数组的容量超过初始容量的 0.75 时,再散列将链表数组扩大 2 倍,把原链表数组的搬移到新的数组中


3.数据结构

位桶数组 transient Node<k,v>[] table;//存储(位桶)的数组</k,v> 数组元素 Node<K,V> 实现了 Entry 接口 //Node是单向链表,它实现了Map.Entry接口 static class Node<k,v> implements Map.Entry<k,v> 红黑树 //红黑树 static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v>

4.数据域

加载因子(默认 0.75):为什么需要使用加载因子,为什么需要扩容呢?因为如果填充比很大,说明利用的空间很多,如果一直不进行扩容的话,链表就会越来越长,这样查找的效率很低,因为链表的长度很大(当然最新版本使用了红黑树后会改进很多),扩容之后,将原来链表数组的每一个链表分成奇偶两个子链表分别挂在新链表数组的散列位置,这样就减少了每个链表的长度,增加查找效率

HashMap 本来是以空间换时间,所以填充比没必要太大。但是填充比太小又会导致空间浪费。如果关注内存,填充比可以稍大,如果主要关注查找性能,填充比可以稍小。

public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量 static final float DEFAULT_LOAD_FACTOR = 0.75f;//填充比 //当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树 static final int TREEIFY_THRESHOLD = 8; static final int UNTREEIFY_THRESHOLD = 6; static final int MIN_TREEIFY_CAPACITY = 64; transient Node<k,v>[] table;//存储元素的数组 transient Set<map.entry<k,v>> entrySet; transient int size;//存放元素的个数 transient int modCount;//被修改的次数fast-fail机制 int threshold;//临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容 final float loadFactor;//填充比(......后面略)

5.HashMap如何取值get

get (key) 方法时获取 key 的 hash 值,计算 hash&(n-1) 得到在链表数组中的位置 first=tab [hash&(n-1)], 先判断 first 的 key 是否与参数 key 相等,不等就遍历后面的链表找到相同的 key 值返回对应的 Value 值即可

public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } /** * Implements Map.get and related methods * * @param hash hash for key * @param key the key * @return the node, or null if none */ final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab;//Entry对象数组 Node<K,V> first,e; //在tab数组中经过散列的第一个位置 int n; K k; /*找到插入的第一个Node,方法是hash值和n-1相与,tab[(n - 1) & hash]*/ //也就是说在一条链上的hash值相同的 if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) { /*检查第一个Node是不是要找的Node*/ if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k))))//判断条件是hash值要相同,key值要相同 return first; /*检查first后面的node*/ if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); /*遍历后面的链表,找到key值和hash值都相同的Node*/ do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }

6.HashMap如何存值put

1,判断键值对数组 tab [] 是否为空或为 null,否则以默认大小 resize (); 2,根据键值 key 计算 hash 值得到插入的数组索引 i,如果 tab [i]==null,直接新建节点添加,否则转入 3 3,判断当前数组中处理 hash 冲突的方式为链表还是红黑树 (check 第一个节点类型即可), 分别处理

public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; /*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/ if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); /*表示有冲突,开始处理冲突*/ else { Node<K,V> e; K k; /*检查第一个Node,p是不是要找的值*/ if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { /*指针为空就挂在后面*/ if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); //如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构,                          //treeifyBin首先判断当前hashMap的长度,如果不足64,只进行 //resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } /*如果有相同的key值就结束遍历*/ if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } /*就是链表上有相同的key值*/ if (e != null) { // existing mapping for key,就是key的Value存在 V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue;//返回存在的Value值 } } ++modCount; /*如果当前大小大于门限,门限原本是初始容量*0.75*/ if (++size > threshold) resize();//扩容两倍 afterNodeInsertion(evict); return null; }

注:当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。


7.HashMap的扩容机制resize

构造 hash 表时,如果不指明初始大小,默认大小为 16(即 Node 数组大小 16),如果 Node [] 数组中的元素达到(填充比 * Node.length)重新调整 HashMap 大小 变为原来 2 倍大小,扩容很耗时

/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; /*如果旧表的长度不是空*/ if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } /*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/ else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) /*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/ newThr = oldThr << 1; // double threshold } /*如果旧表的长度的是0,就是说第一次初始化表*/ else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor;//新表长度乘以加载因子 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) /*下面开始构造新表,初始化表中的数据*/ Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab;//把新表赋值给table if (oldTab != null) {//原表不是空要把原表中数据移动到新表中 /*遍历原来的旧表*/ for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); /*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/ else { // preserve order保证顺序 新计算在新表的位置,并进行搬运 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;//记录下一个结点 //新表是旧表的两倍容量,实例上就把单链表拆分为两队,               //e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) {//lo队不为null,放在新表原位置 loTail.next = null; newTab[j] = loHead; } if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置 hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }

8.HashMap引入红黑树

希碰撞会对 hashMap 的性能带来灾难性的影响。如果多个 hashCode () 的值落到同一个桶内的时候,这些值是存储到一个链表中的。最坏的情况下,所有的 key 都映射到同一个桶中,这样 hashmap 就退化成了一个链表 —— 查找时间从 O (1) 到 O (n)。

红黑树是这样解决的: 如果某个桶中的记录过大的话(当前是 TREEIFY_THRESHOLD = 8),HashMap 会动态的使用一个专门的 treemap 实现来替换掉它。这样做的结果会更好,是 O (logn),而不是糟糕的 O (n)。

在 java jdk8 中对 HashMap 的源码进行了优化,在 jdk7 中,HashMap 处理 “碰撞” 的时候,都是采用链表来存储,当碰撞的结点很多时,查询时间是 O(n)。 在 jdk8 中,HashMap 处理 “碰撞” 增加了红黑树这种数据结构,当碰撞结点较少时,采用链表存储,当较大时(>8 个),采用红黑树(特点是查询时间是 O(logn))存储(有一个阀值控制,大于阀值 (8 个),将链表存储转换成红黑树存储)

转自:https://blog.csdn.net/tuke_tuke/article/details/51588156


最新回复(0)