Algorithm Analysis(Chapter 2 of The Algorithm Design Manual)

it2022-05-08  8

The formal definitions associated with the Big Oh notation are as follows:   • f(n) = O(g(n)) means c · g(n) is an upper bound on f(n). Thus there exists some constant c such that f(n) is always ≤ c · g(n), for large enough n (i.e. , n ≥ n0 for some constant n0).   • f(n) = Ω(g(n)) means c · g(n) is a lower bound on f(n). Thus there exists some constant c such that f(n) is always ≥ c · g(n), for all n ≥ n0.   • f(n) = Θ(g(n)) means c1 · g(n) is an upper bound on f(n) and c2 · g(n) is a lower bound on f(n), for all n ≥ n0. Thus there exist constants c1 and c2 such that f(n) ≤ c1 ·g(n) and f(n) ≥ c2 ·g(n). This means that g(n) provides a nice, tight bound on f(n).

转载于:https://www.cnblogs.com/zhtf2014/archive/2010/09/04/1818205.html

相关资源:foundations of algorithms 5th 2014

最新回复(0)