OVS处理upcall流程分析

it2022-05-08  16

处理upcall总体框架: 1.由函数 handle_upcalls()批量处理(in batches)的是由内核传上来的dpif_upcalls,会解析出upcall的类型。这里主要看在内核中匹配流表失败的MISS_UPCALL。

处理完毕后会得到多个flow_miss。

结构体dpif_upcall代表的是由内核传到用户空间的一个包,包含上传原因,packet data。以及以netlink attr形式存在的键值。 struct  dpif_upcall {     /* All types. */     enum dpif_upcall_type type;     struct ofpbuf *packet;      /* Packet data. */     struct nlattr *key;         /* Flow key. */     size_t key_len;             /* Length of 'key' in bytes. */     /* DPIF_UC_ACTION only. */     uint64_t userdata;          /* Argument to OVS_ACTION_ATTR_USERSPACE. */ }; 结构体flow_miss是将具有同样流特征的packets统一起来( batching),性能可能会更优,所以这个结构体要将datapath interface相关的数据队列起来。每一个flow_miss相应的是发送的一个或多个数据包,另外可能会在dpif中安装流项。

struct  flow_miss  {     struct hmap_node hmap_node;     struct  flow  flow;  //流特征。     enum  odp_key_fitness  key_fitness;     const struct nlattr *key;     size_t key_len;     ovs_be16 initial_tci;      struct list packets;     //具有该流特征的全部的packets;     enum dpif_upcall_type upcall_type; }; 2. 接下来。函数handle_miss_upcalls()会依次遍历这个flow_misses数组,完毕的工作有:1)得到odp_key_fitness (也就是内核层/用户层在流匹配上的一致程度);2)从packet data中析取出流信息miss->flow。3)然后对miss->flow进行哈希。假设不存在则插入到TO-DO-List中。4)将这个upcall->packet插入到对应的节点上。

3.然后对于TO-DO-List中的每一个元素,调用handle_flow_miss()函数。它会从这个flow_miss中构造得到flow_miss_op,详细的过程是:1)查询ofproto的facet表ofproto->facets看针对这个flow的facet是否已存在。2)从ofproto的分类表中查找与这个flow相应的分类规则,对于第一个进入系统的包,还没有建立起cls_rule。此时返回ofproto->miss_rule( 是怎样初始化的呢?);3)构造一个facet,和当前的flow和rule_dpif关联起来;4)这时候与flow_miss 匹配的facet也有了,接着呼叫函数 handle_flow_miss_with_facet()可能会添加须要的操作到flow_miss_op中。详细过程是:先是通过内核传上来的key找subfacet是否存在,假设不存在就构建一个;然后针对每一个连接到这个flow_miss中的packet进行分别处理;handle_flow_miss_common()会推断假设rule->up.cr.priority = FAIL_OPEN_PRIORITY的话就会发送一个packetin到SDN Controller;对于刚创建的subfacet,其actions为空,所以函数subfacet_make_actions()会依据subfacet中的rule来创建datapath action,存储在odp_actions中。假设upcall的类型是DPIF_UC_MISS。就创建一个DPIF_OP_FLOW_PUT类型的flow_miss_op(即dpif_flow_put),然后compose_slow_path()会构建一个用户空间的user_action_cookie,它的类型是USER_ACTION_COOKIE_SLOW_PATH 表示这个流得到了用户空间的处理。然后-> odp_put_userspace_action() 会添加一个OVS_ACTION_ATTR_USERSPACE action到odp_actions中,属性值包含netlink pid 和 刚才的cookie。

struct  flow_miss_op  {     struct dpif_op dpif_op;    //据此能够得到操作类型handler;     struct subfacet *subfacet;    // Subfacet  ,据此能够得到全部的flow和rule等数据。     void *garbage;              /* Pointer to pass to free(), NULL if none. */     uint64_t stub[1024 / 8];    /* Temporary buffer. */ }; struct dpif_op {     enum dpif_op_type type;        int error;     union {         struct dpif_flow_put flow_put;         struct dpif_flow_del flow_del;         struct dpif_execute execute;     } u; }; enum dpif_op_type {     DPIF_OP_FLOW_PUT = 1,     DPIF_OP_FLOW_DEL,     DPIF_OP_EXECUTE, }; 结构体facet是openflow flow的全然匹配( exact-match)的实例抽象。它与"struct flow"关联。代表OVS用户空间对于exact match flow的观点。有一个或多个subfacet。每一个subfacet追踪着内核层datapath对于这个exact-match flow 的观点。当内核层和用户空间对一个flow key观点一致的时候,就仅仅有一个subfacet(通常如此)。很多其它理解參考[]。 struct  facet {     /* Owners. */     struct hmap_node hmap_node;  /* In owning ofproto's 'facets' hmap. */     struct list list_node;       /* In owning rule's 'facets' list. */      struct rule_dpif *rule;      /* Owning rule. */     /* Owned data. */      struct list subfacets;     long long int used;         /* Time last used; time created if not used. */     /* Key. */      struct flow flow;    // 接下来是 一些统计字段;     /* Storage for a single subfacet, to reduce malloc() time and space      * overhead.  (A facet always has at least one subfacet and in the common      * case has exactly one subfacet.) */      struct subfacet one_subfacet; }; struct rule_dpif {      struct rule up;     uint64_t packet_count;       /* Number of packets received. */     uint64_t byte_count;         /* Number of bytes received. */     tag_type tag;                /* Caches rule_calculate_tag() result. */      struct list facets;          /* List of "struct facet"s. */ }; /* An OpenFlow flow within a "struct ofproto". * * With few exceptions, ofproto implementations may look at these fields but * should not modify them. */ struct  rule {     struct list ofproto_node;    /* Owned by ofproto base code. */      struct ofproto *ofproto;     /* The ofproto that contains this rule. */      struct cls_rule cr;          /* In owning ofproto's classifier. */     struct ofoperation *pending; /* Operation now in progress, if nonnull. */     ovs_be64 flow_cookie;        /* Controller-issued identifier. */     long long int created;       /* Creation time. */     long long int modified;      /* Time of last modification. */     long long int used;          /* Last use; time created if never used. */     uint16_t hard_timeout;       /* In seconds from ->modified. */     uint16_t idle_timeout;       /* In seconds from ->used. */     uint8_t table_id;            /* Index in ofproto's 'tables' array. */     bool send_flow_removed;      /* Send a flow removed message? */     /* Eviction groups. */     bool evictable;              /* If false, prevents eviction. */     struct heap_node evg_node;   /* In eviction_group's "rules" heap. */     struct eviction_group *eviction_group; /* NULL if not in any group. */     struct ofpact *ofpacts;      /* Sequence of "struct ofpacts". */     unsigned int ofpacts_len;    /* Size of 'ofpacts', in bytes. */     /* Flow monitors. */     enum nx_flow_monitor_flags monitor_flags;     uint64_t add_seqno;         /* Sequence number when added. */     uint64_t modify_seqno;      /* Sequence number when changed. */ }; struct  subfacet {     /* Owners. */     struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */     struct list list_node;      /* In struct facet's 'facets' list. */      struct facet *facet;        /* Owning facet. */     /* Key.      *      * To save memory in the common case, 'key' is NULL if 'key_fitness' is      * ODP_FIT_PERFECT, that is, odp_flow_key_from_flow() can accurately      * regenerate the ODP flow key from ->facet->flow. */     enum odp_key_fitness key_fitness;     struct nlattr *key;     int key_len;     long long int used;         /* Time last used; time created if not used. */     uint64_t dp_packet_count;   /* Last known packet count in the datapath. */     uint64_t dp_byte_count;     /* Last known byte count in the datapath. */     /* Datapath actions.      *      * These should be essentially identical for every subfacet in a facet, but      * may differ in trivial ways due to VLAN splinters. */     size_t actions_len;         /* Number of bytes in actions[]. */      struct nlattr *actions;     /* Datapath actions. */     enum  slow_path_reason slow; /* 0 if fast path may be used. */     enum  subfacet_path path;    /* Installed in datapath? */ }; 枚举体slow_path_reason 列举的是packet没有在内核层被转发的原因(也就是说这个packet是fast path)。 enum  slow_path_reason {     /* These reasons are mutually exclusive. */     SLOW_CFM = 1 << 0,          /* CFM packets need per-packet processing. */     SLOW_LACP = 1 << 1,         /* LACP packets need per-packet processing. */     SLOW_STP = 1 << 2,          /* STP packets need per-packet processing. */     SLOW_IN_BAND = 1 << 3,      /* In-band control needs every packet. */     // 和 SLOW_CFM, SLOW_LACP, SLOW_STP相互排斥,能够和SLOW_IN_BAND组合。      SLOW_CONTROLLER = 1 << 4,   /* Packets must go to OpenFlow controller. */ }; 枚举体subfacet_path列举的是其可能的当前状态:1)SF_NOT_INSTALLED表示没有安装在datapath中,这样的情况出如今这个subfacet构建之后,销毁之前,或者当我们在安装一个subfacet到datapath时出错。由于subfacet中相应的有action,所以这里的facet install指的是datapath运行了由用户空间下发的详细action。2)SF_FAST_PATH说明相应的action已经得到了运行,packets能够在内核层直接转发;3)SF_SLOW_PATH是流规则指定了要发往用户空间。 enum  subfacet_path {     SF_NOT_INSTALLED,           /* No datapath flow for this subfacet. */     SF_FAST_PATH,               /* Full actions are installed. */     SF_SLOW_PATH,               /* Send-to-userspace action is installed. */ }; 4. 通过上面的操作,flow_miss_op数组就得到了。接下来调用函数 dpif_operate() 依次对dpif运行这些operation。  for (i = 0; i < n_ops; i++) {         struct dpif_op *op = ops[i];         switch (op->type) {         case DPIF_OP_FLOW_PUT:             op->error =  dpif_flow_put__(dpif, &op->u.flow_put);             break;         case DPIF_OP_FLOW_DEL:             op->error = dpif_flow_del__(dpif, &op->u.flow_del);             break;         case DPIF_OP_EXECUTE:             op->error = dpif_execute__(dpif, &op->u.execute);             break;         default:             NOT_REACHED(); } 这里就看flow put的情况,用户空间会通过genl把对应的动作下发给内核datapath,而且接收响应。 转载请注明出处谢谢: http://blog.csdn.net/vonzhoufz/article/details/29359299

版权声明:本文博主原创文章,博客,未经同意不得转载。

转载于:https://www.cnblogs.com/gcczhongduan/p/4889476.html


最新回复(0)