#include <iostream>
#include <cstring>
using namespace std;
#define DIGIT 4
//四位隔开,即万进制
#define DEPTH 10000
//万进制
#define MAX 251
//题目最大位数/4,要不大直接设为最大位数也行
typedef int bignum_t[MAX+
1];
/************************************************************************/
/* 读取操作数,对操作数进行处理存储在数组里 */
/************************************************************************/
int read(bignum_t a,istream&
is=
cin)
{
char buf[MAX*DIGIT+
1],ch ;
int i,j ;
memset((void*)a,
0,
sizeof(bignum_t));
if(!(
is>>buf))
return 0 ;
for(a[
0]=strlen(buf),i=a[
0]/
2-
1;i>=
0;i--
)
ch=buf[i],buf[i]=buf[a[
0]-
1-i],buf[a[
0]-
1-i]=
ch ;
for(a[
0]=(a[
0]+DIGIT-
1)/DIGIT,j=strlen(buf);j<a[
0]*DIGIT;buf[j++]=
'0');
for(i=
1;i<=a[
0];i++
)
for(a[i]=
0,j=
0;j<DIGIT;j++
)
a[i]=a[i]*
10+buf[i*DIGIT-
1-j]-
'0' ;
for(;!a[a[
0]]&&a[
0]>
1;a[
0]--
);
return 1 ;
}
void write(
const bignum_t a,ostream&os=
cout)
{
int i,j ;
for(os<<a[i=a[
0]],i--;i;i--
)
for(j=DEPTH/
10;j;j/=
10)
os<<a[i]/j%
10 ;
}
int comp(
const bignum_t a,
const bignum_t b)
{
int i ;
if(a[
0]!=b[
0])
return a[
0]-b[
0];
for(i=a[
0];i;i--
)
if(a[i]!=
b[i])
return a[i]-
b[i];
return 0 ;
}
int comp(
const bignum_t a,
const int b)
{
int c[
12]=
{
1
}
;
for(c[
1]=b;c[c[
0]]>=DEPTH;c[c[
0]+
1]=c[c[
0]]/DEPTH,c[c[
0]]%=DEPTH,c[
0]++
);
return comp(a,c);
}
int comp(
const bignum_t a,
const int c,
const int d,
const bignum_t b)
{
int i,t=
0,O=-DEPTH*
2 ;
if(b[
0]-a[
0]<d&&
c)
return 1 ;
for(i=b[
0];i>d;i--
)
{
t=t*DEPTH+a[i-d]*c-
b[i];
if(t>
0)
return 1 ;
if(t<O)
return 0 ;
}
for(i=d;i;i--
)
{
t=t*DEPTH-
b[i];
if(t>
0)
return 1 ;
if(t<O)
return 0 ;
}
return t>
0 ;
}
/************************************************************************/
/* 大数与大数相加 */
/************************************************************************/
void add(bignum_t a,
const bignum_t b)
{
int i ;
for(i=
1;i<=b[
0];i++
)
if((a[i]+=b[i])>=
DEPTH)
a[i]-=DEPTH,a[i+
1]++
;
if(b[
0]>=a[
0])
a[0]=b[
0];
else
for(;a[i]>=DEPTH&&i<a[
0];a[i]-=DEPTH,i++,a[i]++
);
a[0]+=(a[a[
0]+
1]>
0);
}
/************************************************************************/
/* 大数与小数相加 */
/************************************************************************/
void add(bignum_t a,
const int b)
{
int i=
1 ;
for(a[
1]+=b;a[i]>=DEPTH&&i<a[
0];a[i+
1]+=a[i]/DEPTH,a[i]%=DEPTH,i++
);
for(;a[a[
0]]>=DEPTH;a[a[
0]+
1]=a[a[
0]]/DEPTH,a[a[
0]]%=DEPTH,a[
0]++
);
}
/************************************************************************/
/* 大数相减(被减数>=减数) */
/************************************************************************/
void sub(bignum_t a,
const bignum_t b)
{
int i ;
for(i=
1;i<=b[
0];i++
)
if((a[i]-=b[i])<
0)
a[i+
1]--,a[i]+=
DEPTH ;
for(;a[i]<
0;a[i]+=DEPTH,i++,a[i]--
);
for(;!a[a[
0]]&&a[
0]>
1;a[
0]--
);
}
/************************************************************************/
/* 大数减去小数(被减数>=减数) */
/************************************************************************/
void sub(bignum_t a,
const int b)
{
int i=
1 ;
for(a[
1]-=b;a[i]<
0;a[i+
1]+=(a[i]-DEPTH+
1)/DEPTH,a[i]-=(a[i]-DEPTH+
1)/DEPTH*DEPTH,i++
);
for(;!a[a[
0]]&&a[
0]>
1;a[
0]--
);
}
void sub(bignum_t a,
const bignum_t b,
const int c,
const int d)
{
int i,O=b[
0]+
d ;
for(i=
1+d;i<=O;i++
)
if((a[i]-=b[i-d]*c)<
0)
a[i+
1]+=(a[i]-DEPTH+
1)/DEPTH,a[i]-=(a[i]-DEPTH+
1)/DEPTH*
DEPTH ;
for(;a[i]<
0;a[i+
1]+=(a[i]-DEPTH+
1)/DEPTH,a[i]-=(a[i]-DEPTH+
1)/DEPTH*DEPTH,i++
);
for(;!a[a[
0]]&&a[
0]>
1;a[
0]--
);
}
/************************************************************************/
/* 大数相乘,读入被乘数a,乘数b,结果保存在c[] */
/************************************************************************/
void mul(bignum_t c,
const bignum_t a,
const bignum_t b)
{
int i,j ;
memset((void*)c,
0,
sizeof(bignum_t));
for(c[
0]=a[
0]+b[
0]-
1,i=
1;i<=a[
0];i++
)
for(j=
1;j<=b[
0];j++
)
if((c[i+j-
1]+=a[i]*b[j])>=
DEPTH)
c[i+j]+=c[i+j-
1]/DEPTH,c[i+j-
1]%=
DEPTH ;
for(c[
0]+=(c[c[
0]+
1]>
0);!c[c[
0]]&&c[
0]>
1;c[
0]--
);
}
/************************************************************************/
/* 大数乘以小数,读入被乘数a,乘数b,结果保存在被乘数 */
/************************************************************************/
void mul(bignum_t a,
const int b)
{
int i ;
for(a[
1]*=b,i=
2;i<=a[
0];i++
)
{
a[i]*=
b ;
if(a[i-
1]>=
DEPTH)
a[i]+=a[i-
1]/DEPTH,a[i-
1]%=
DEPTH ;
}
for(;a[a[
0]]>=DEPTH;a[a[
0]+
1]=a[a[
0]]/DEPTH,a[a[
0]]%=DEPTH,a[
0]++
);
for(;!a[a[
0]]&&a[
0]>
1;a[
0]--
);
}
void mul(bignum_t b,
const bignum_t a,
const int c,
const int d)
{
int i ;
memset((void*)b,
0,
sizeof(bignum_t));
for(b[
0]=a[
0]+d,i=d+
1;i<=b[
0];i++
)
if((b[i]+=a[i-d]*c)>=
DEPTH)
b[i+
1]+=b[i]/DEPTH,b[i]%=
DEPTH ;
for(;b[b[
0]+
1];b[
0]++,b[b[
0]+
1]=b[b[
0]]/DEPTH,b[b[
0]]%=
DEPTH);
for(;!b[b[
0]]&&b[
0]>
1;b[
0]--
);
}
/**************************************************************************/
/* 大数相除,读入被除数a,除数b,结果保存在c[]数组 */
/* 需要comp()函数 */
/**************************************************************************/
void div(bignum_t c,bignum_t a,
const bignum_t b)
{
int h,l,m,i ;
memset((void*)c,
0,
sizeof(bignum_t));
c[0]=(b[
0]<a[
0]+
1)?(a[
0]-b[
0]+
2):
1 ;
for(i=c[
0];i;sub(a,b,c[i]=m,i-
1),i--
)
for(h=DEPTH-
1,l=
0,m=(h+l+
1)>>
1;h>l;m=(h+l+
1)>>
1)
if(comp(b,m,i-
1,a))h=m-
1 ;
else l=
m ;
for(;!c[c[
0]]&&c[
0]>
1;c[
0]--
);
c[0]=c[
0]>
1?c[
0]:
1 ;
}
void div(bignum_t a,
const int b,
int&
c)
{
int i ;
for(c=
0,i=a[
0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--
);
for(;!a[a[
0]]&&a[
0]>
1;a[
0]--
);
}
/************************************************************************/
/* 大数平方根,读入大数a,结果保存在b[]数组里 */
/* 需要comp()函数 */
/************************************************************************/
void sqrt(bignum_t b,bignum_t a)
{
int h,l,m,i ;
memset((void*)b,
0,
sizeof(bignum_t));
for(i=b[
0]=(a[
0]+
1)>>
1;i;sub(a,b,m,i-
1),b[i]+=m,i--
)
for(h=DEPTH-
1,l=
0,b[i]=m=(h+l+
1)>>
1;h>l;b[i]=m=(h+l+
1)>>
1)
if(comp(b,m,i-
1,a))h=m-
1 ;
else l=
m ;
for(;!b[b[
0]]&&b[
0]>
1;b[
0]--
);
for(i=
1;i<=b[
0];b[i++]>>=
1);
}
/************************************************************************/
/* 返回大数的长度 */
/************************************************************************/
int length(
const bignum_t a)
{
int t,ret ;
for(ret=(a[
0]-
1)*DIGIT,t=a[a[
0]];t;t/=
10,ret++
);
return ret>
0?ret:
1 ;
}
/************************************************************************/
/* 返回指定位置的数字,从低位开始数到第b位,返回b位上的数 */
/************************************************************************/
int digit(
const bignum_t a,
const int b)
{
int i,ret ;
for(ret=a[(b-
1)/DIGIT+
1],i=(b-
1)%DIGIT;i;ret/=
10,i--
);
return ret%
10 ;
}
/************************************************************************/
/* 返回大数末尾0的个数 */
/************************************************************************/
int zeronum(
const bignum_t a)
{
int ret,t ;
for(ret=
0;!a[ret+
1];ret++
);
for(t=a[ret+
1],ret*=DIGIT;!(t%
10);t/=
10,ret++
);
return ret ;
}
void comp(
int*a,
const int l,
const int h,
const int d)
{
int i,j,t ;
for(i=l;i<=h;i++
)
for(t=i,j=
2;t>
1;j++
)
while(!(t%
j))
a[j]+=d,t/=
j ;
}
void convert(
int*a,
const int h,bignum_t b)
{
int i,j,t=
1 ;
memset(b,0,
sizeof(bignum_t));
for(b[
0]=b[
1]=
1,i=
2;i<=h;i++
)
if(a[i])
for(j=a[i];j;t*=i,j--
)
if(t*i>
DEPTH)
mul(b,t),t=
1 ;
mul(b,t);
}
/************************************************************************/
/* 组合数 */
/************************************************************************/
void combination(bignum_t a,
int m,
int n)
{
int*t=
new int[m+
1];
memset((void*)t,
0,
sizeof(
int)*(m+
1));
comp(t,n+
1,m,
1);
comp(t,2,m-n,-
1);
convert(t,m,a);
delete[]t ;
}
/************************************************************************/
/* 排列数 */
/************************************************************************/
void permutation(bignum_t a,
int m,
int n)
{
int i,t=
1 ;
memset(a,0,
sizeof(bignum_t));
a[0]=a[
1]=
1 ;
for(i=m-n+
1;i<=m;t*=i++
)
if(t*i>
DEPTH)
mul(a,t),t=
1 ;
mul(a,t);
}
#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))
int read(bignum_t a,
int&sgn,istream&
is=
cin)
{
char str[MAX*DIGIT+
2],ch,*
buf ;
int i,j ;
memset((void*)a,
0,
sizeof(bignum_t));
if(!(
is>>str))
return 0 ;
buf=str,sgn=
1 ;
if(*buf==
'-')sgn=-
1,buf++
;
for(a[
0]=strlen(buf),i=a[
0]/
2-
1;i>=
0;i--
)
ch=buf[i],buf[i]=buf[a[
0]-
1-i],buf[a[
0]-
1-i]=
ch ;
for(a[
0]=(a[
0]+DIGIT-
1)/DIGIT,j=strlen(buf);j<a[
0]*DIGIT;buf[j++]=
'0');
for(i=
1;i<=a[
0];i++
)
for(a[i]=
0,j=
0;j<DIGIT;j++
)
a[i]=a[i]*
10+buf[i*DIGIT-
1-j]-
'0' ;
for(;!a[a[
0]]&&a[
0]>
1;a[
0]--
);
if(a[
0]==
1&&!a[
1])sgn=
0 ;
return 1 ;
}
struct bignum
{
bignum_t num ;
int sgn ;
public :
inline bignum()
{
memset(num,0,
sizeof(bignum_t));
num[0]=
1 ;
sgn=
0 ;
}
inline int operator!
()
{
return num[
0]==
1&&!num[
1];
}
inline bignum&
operator=(
const bignum&
a)
{
memcpy(num,a.num,sizeof(bignum_t));
sgn=
a.sgn ;
return*
this ;
}
inline bignum&
operator=(
const int a)
{
memset(num,0,
sizeof(bignum_t));
num[0]=
1 ;
sgn=
SGN (a);
add(num,sgn*
a);
return*
this ;
}
;
inline bignum&
operator+=(
const bignum&
a)
{
if(sgn==
a.sgn)add(num,a.num);
else if
(sgn&&
a.sgn)
{
int ret=
comp(num,a.num);
if(ret>
0)sub(num,a.num);
else if(ret<
0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memcpy(num,a.num,sizeof(bignum_t));
sub (num,t);
sgn=
a.sgn ;
}
else memset(num,
0,
sizeof(bignum_t)),num[
0]=
1,sgn=
0 ;
}
else if(!
sgn)
memcpy(num,a.num,sizeof(bignum_t)),sgn=
a.sgn ;
return*
this ;
}
inline bignum&
operator+=(
const int a)
{
if(sgn*a>
0)add(num,ABS(a));
else if(sgn&&
a)
{
int ret=
comp(num,ABS(a));
if(ret>
0)sub(num,ABS(a));
else if(ret<
0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memset(num,0,
sizeof(bignum_t));
num[0]=
1 ;
add(num,ABS (a));
sgn=-
sgn ;
sub(num,t);
}
else memset(num,
0,
sizeof(bignum_t)),num[
0]=
1,sgn=
0 ;
}
else if
(!sgn)sgn=
SGN(a),add(num,ABS(a));
return*
this ;
}
inline bignum operator+(
const bignum&
a)
{
bignum ret ;
memcpy(ret.num,num,sizeof (bignum_t));
ret.sgn=
sgn ;
ret+=
a ;
return ret ;
}
inline bignum operator+(
const int a)
{
bignum ret ;
memcpy(ret.num,num,sizeof (bignum_t));
ret.sgn=
sgn ;
ret+=
a ;
return ret ;
}
inline bignum&
operator-=(
const bignum&
a)
{
if(sgn*a.sgn<
0)add(num,a.num);
else if
(sgn&&
a.sgn)
{
int ret=
comp(num,a.num);
if(ret>
0)sub(num,a.num);
else if(ret<
0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memcpy(num,a.num,sizeof(bignum_t));
sub(num,t);
sgn=-
sgn ;
}
else memset(num,
0,
sizeof(bignum_t)),num[
0]=
1,sgn=
0 ;
}
else if(!sgn)add (num,a.num),sgn=-
a.sgn ;
return*
this ;
}
inline bignum&
operator-=(
const int a)
{
if(sgn*a<
0)add(num,ABS(a));
else if(sgn&&
a)
{
int ret=
comp(num,ABS(a));
if(ret>
0)sub(num,ABS(a));
else if(ret<
0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memset(num,0,
sizeof(bignum_t));
num[0]=
1 ;
add(num,ABS(a));
sub(num,t);
sgn=-
sgn ;
}
else memset(num,
0,
sizeof(bignum_t)),num[
0]=
1,sgn=
0 ;
}
else if
(!sgn)sgn=-
SGN(a),add(num,ABS(a));
return*
this ;
}
inline bignum operator-(
const bignum&
a)
{
bignum ret ;
memcpy(ret.num,num,sizeof(bignum_t));
ret.sgn=
sgn ;
ret-=
a ;
return ret ;
}
inline bignum operator-(
const int a)
{
bignum ret ;
memcpy(ret.num,num,sizeof(bignum_t));
ret.sgn=
sgn ;
ret-=
a ;
return ret ;
}
inline bignum&
operator*=(
const bignum&
a)
{
bignum_t t ;
mul(t,num,a.num);
memcpy(num,t,sizeof(bignum_t));
sgn*=
a.sgn ;
return*
this ;
}
inline bignum&
operator*=(
const int a)
{
mul(num,ABS(a));
sgn*=
SGN(a);
return*
this ;
}
inline bignum operator*(
const bignum&
a)
{
bignum ret ;
mul(ret.num,num,a.num);
ret.sgn=sgn*
a.sgn ;
return ret ;
}
inline bignum operator*(
const int a)
{
bignum ret ;
memcpy(ret.num,num,sizeof (bignum_t));
mul(ret.num,ABS(a));
ret.sgn=sgn*
SGN(a);
return ret ;
}
inline bignum&
operator/=(
const bignum&
a)
{
bignum_t t ;
div(t,num,a.num);
memcpy (num,t,sizeof(bignum_t));
sgn=(num[
0]==
1&&!num[
1])?
0:sgn*
a.sgn ;
return*
this ;
}
inline bignum&
operator/=(
const int a)
{
int t ;
div(num,ABS(a),t);
sgn=(num[
0]==
1&&!num [
1])?
0:sgn*
SGN(a);
return*
this ;
}
inline bignum operator/(
const bignum&
a)
{
bignum ret ;
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
div(ret.num,t,a.num);
ret.sgn=(ret.num[
0]==
1&&!ret.num[
1])?
0:sgn*
a.sgn ;
return ret ;
}
inline bignum operator/(
const int a)
{
bignum ret ;
int t ;
memcpy(ret.num,num,sizeof(bignum_t));
div(ret.num,ABS(a),t);
ret.sgn=(ret.num[
0]==
1&&!ret.num[
1])?
0:sgn*
SGN(a);
return ret ;
}
inline bignum&
operator%=(
const bignum&
a)
{
bignum_t t ;
div(t,num,a.num);
if(num[
0]==
1&&!num[
1])sgn=
0 ;
return*
this ;
}
inline int operator%=(
const int a)
{
int t ;
div(num,ABS(a),t);
memset(num,0,
sizeof (bignum_t));
num[0]=
1 ;
add(num,t);
return t ;
}
inline bignum operator%(
const bignum&
a)
{
bignum ret ;
bignum_t t ;
memcpy(ret.num,num,sizeof(bignum_t));
div(t,ret.num,a.num);
ret.sgn=(ret.num[
0]==
1&&!ret.num [
1])?
0:sgn ;
return ret ;
}
inline int operator%(
const int a)
{
bignum ret ;
int t ;
memcpy(ret.num,num,sizeof(bignum_t));
div(ret.num,ABS(a),t);
memset(ret.num,0,
sizeof(bignum_t));
ret.num[0]=
1 ;
add(ret.num,t);
return t ;
}
inline bignum&
operator++
()
{
*
this+=
1 ;
return*
this ;
}
inline bignum&
operator--
()
{
*
this-=
1 ;
return*
this ;
}
;
inline int operator>(
const bignum&
a)
{
return sgn>
0?(a.sgn>
0?comp(num,a.num)>
0:
1):(sgn<
0?(a.sgn<
0?comp(num,a.num)<
0:
0):a.sgn<
0);
}
inline int operator>(
const int a)
{
return sgn>
0?(a>
0?comp(num,a)>
0:
1):(sgn<
0?(a<
0?comp(num,-a)<
0:
0):a<
0);
}
inline int operator>=(
const bignum&
a)
{
return sgn>
0?(a.sgn>
0?comp(num,a.num)>=
0:
1):(sgn<
0?(a.sgn<
0?comp(num,a.num)<=
0:
0):a.sgn<=
0);
}
inline int operator>=(
const int a)
{
return sgn>
0?(a>
0?comp(num,a)>=
0:
1):(sgn<
0?(a<
0?comp(num,-a)<=
0:
0):a<=
0);
}
inline int operator<(
const bignum&
a)
{
return sgn<
0?(a.sgn<
0?comp(num,a.num)>
0:
1):(sgn>
0?(a.sgn>
0?comp(num,a.num)<
0:
0):a.sgn>
0);
}
inline int operator<(
const int a)
{
return sgn<
0?(a<
0?comp(num,-a)>
0:
1):(sgn>
0?(a>
0?comp(num,a)<
0:
0):a>
0);
}
inline int operator<=(
const bignum&
a)
{
return sgn<
0?(a.sgn<
0?comp(num,a.num)>=
0:
1):(sgn>
0?(a.sgn>
0?comp(num,a.num)<=
0:
0):a.sgn>=
0);
}
inline int operator<=(
const int a)
{
return sgn<
0?(a<
0?comp(num,-a)>=
0:
1):
(sgn>
0?(a>
0?comp(num,a)<=
0:
0):a>=
0);
}
inline int operator==(
const bignum&
a)
{
return(sgn==a.sgn)?!comp(num,a.num):
0 ;
}
inline int operator==(
const int a)
{
return(sgn*a>=
0)?!comp(num,ABS(a)):
0 ;
}
inline int operator!=(
const bignum&
a)
{
return(sgn==a.sgn)?comp(num,a.num):
1 ;
}
inline int operator!=(
const int a)
{
return(sgn*a>=
0)?comp(num,ABS(a)):
1 ;
}
inline int operator[](
const int a)
{
return digit(num,a);
}
friend inline istream&
operator>>(istream&
is,bignum&
a)
{
read(a.num,a.sgn,is);
return is ;
}
friend inline ostream&
operator<<(ostream&os,
const bignum&
a)
{
if(a.sgn<
0)
os<<
'-' ;
write(a.num,os);
return os ;
}
friend inline bignum sqrt(const bignum&
a)
{
bignum ret ;
bignum_t t ;
memcpy(t,a.num,sizeof(bignum_t));
sqrt(ret.num,t);
ret.sgn=ret.num[
0]!=
1||ret.num[
1];
return ret ;
}
friend inline bignum sqrt(const bignum&a,bignum&
b)
{
bignum ret ;
memcpy(b.num,a.num,sizeof(bignum_t));
sqrt(ret.num,b.num);
ret.sgn=ret.num[
0]!=
1||ret.num[
1];
b.sgn=b.num[
0]!=
1||ret.num[
1];
return ret ;
}
inline int length()
{
return :: length(num);
}
inline int zeronum()
{
return :: zeronum(num);
}
inline bignum C(const int m,
const int n)
{
combination(num,m,n);
sgn=
1 ;
return*
this ;
}
inline bignum P(const int m,
const int n)
{
permutation(num,m,n);
sgn=
1 ;
return*
this ;
}
};
bignum bigpow(int a,
int b)
{
bignum ans,nw;
ans+=
1;
nw+=
a;
while(b)
{
if(b&
1) ans*=
nw;
nw=nw*
nw;
b>>=
1;
}
return ans;
}
int main()
{
bignum a,b,c;
cin>>a>>
b;
cout<<
"加法:"<<a+b<<
endl;
cout<<
"减法:"<<a-b<<
endl;
cout<<
"乘法:"<<a*b<<
endl;
cout<<
"除法:"<<a/b<<
endl;
c=
sqrt(a);
cout<<
"平方根:"<<c<<
endl;
cout<<
"a的长度:"<<a.length()<<
endl;
cout<<
"a的末尾0个数:"<<a.zeronum()<<endl<<
endl;
cout<<
"组合: 从10个不同元素取3个元素组合的所有可能性为"<<c.C(
10,
3)<<
endl;
cout<<
"排列: 从10个不同元素取3个元素排列的所有可能性为"<<c.P(
10,
3)<<
endl;
return 0 ;
}
#include <iostream>#include <cstring>using namespace std;#define DIGIT 4 //四位隔开,即万进制#define DEPTH 10000 //万进制#define MAX 251 //题目最大位数/4,要不大直接设为最大位数也行typedef int bignum_t[MAX+1];/************************************************************************//* 读取操作数,对操作数进行处理存储在数组里 *//************************************************************************/int read(bignum_t a,istream&is=cin){ char buf[MAX*DIGIT+1],ch ; int i,j ; memset((void*)a,0,sizeof(bignum_t)); if(!(is>>buf))return 0 ; for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ; for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for(i=1;i<=a[0];i++) for(a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ; for(;!a[a[0]]&&a[0]>1;a[0]--); return 1 ;}void write(const bignum_t a,ostream&os=cout){ int i,j ; for(os<<a[i=a[0]],i--;i;i--) for(j=DEPTH/10;j;j/=10) os<<a[i]/j ;}int comp(const bignum_t a,const bignum_t b){ int i ; if(a[0]!=b[0]) return a[0]-b[0]; for(i=a[0];i;i--) if(a[i]!=b[i]) return a[i]-b[i]; return 0 ;}int comp(const bignum_t a,const int b){ int c[12]= { 1 } ; for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++); return comp(a,c);}int comp(const bignum_t a,const int c,const int d,const bignum_t b){ int i,t=0,O=-DEPTH*2 ; if(b[0]-a[0]<d&&c) return 1 ; for(i=b[0];i>d;i--) { t=t*DEPTH+a[i-d]*c-b[i]; if(t>0)return 1 ; if(t<O)return 0 ; } for(i=d;i;i--) { t=t*DEPTH-b[i]; if(t>0)return 1 ; if(t<O)return 0 ; } return t>0 ;}/************************************************************************//* 大数与大数相加 *//************************************************************************/void add(bignum_t a,const bignum_t b){ int i ; for(i=1;i<=b[0];i++) if((a[i]+=b[i])>=DEPTH) a[i]-=DEPTH,a[i+1]++; if(b[0]>=a[0]) a[0]=b[0]; else for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++); a[0]+=(a[a[0]+1]>0);}/************************************************************************//* 大数与小数相加 *//************************************************************************/void add(bignum_t a,const int b){ int i=1 ; for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++); for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);}/************************************************************************//* 大数相减(被减数>=减数) *//************************************************************************/void sub(bignum_t a,const bignum_t b){ int i ; for(i=1;i<=b[0];i++) if((a[i]-=b[i])<0) a[i+1]--,a[i]+=DEPTH ; for(;a[i]<0;a[i]+=DEPTH,i++,a[i]--); for(;!a[a[0]]&&a[0]>1;a[0]--);}/************************************************************************//* 大数减去小数(被减数>=减数) *//************************************************************************/void sub(bignum_t a,const int b){ int i=1 ; for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--);}void sub(bignum_t a,const bignum_t b,const int c,const int d){ int i,O=b[0]+d ; for(i=1+d;i<=O;i++) if((a[i]-=b[i-d]*c)<0) a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ; for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--);}/************************************************************************//* 大数相乘,读入被乘数a,乘数b,结果保存在c[] *//************************************************************************/void mul(bignum_t c,const bignum_t a,const bignum_t b){ int i,j ; memset((void*)c,0,sizeof(bignum_t)); for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++) for(j=1;j<=b[0];j++) if((c[i+j-1]+=a[i]*b[j])>=DEPTH) c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ; for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--);}/************************************************************************//* 大数乘以小数,读入被乘数a,乘数b,结果保存在被乘数 *//************************************************************************/void mul(bignum_t a,const int b){ int i ; for(a[1]*=b,i=2;i<=a[0];i++) { a[i]*=b ; if(a[i-1]>=DEPTH) a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ; } for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); for(;!a[a[0]]&&a[0]>1;a[0]--);}void mul(bignum_t b,const bignum_t a,const int c,const int d){ int i ; memset((void*)b,0,sizeof(bignum_t)); for(b[0]=a[0]+d,i=d+1;i<=b[0];i++) if((b[i]+=a[i-d]*c)>=DEPTH) b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ; for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH); for(;!b[b[0]]&&b[0]>1;b[0]--);}/**************************************************************************//* 大数相除,读入被除数a,除数b,结果保存在c[]数组 *//* 需要comp()函数 *//**************************************************************************/void div(bignum_t c,bignum_t a,const bignum_t b){ int h,l,m,i ; memset((void*)c,0,sizeof(bignum_t)); c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ; for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--) for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1) if(comp(b,m,i-1,a))h=m-1 ; else l=m ; for(;!c[c[0]]&&c[0]>1;c[0]--); c[0]=c[0]>1?c[0]:1 ;}void div(bignum_t a,const int b,int&c){ int i ; for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--); for(;!a[a[0]]&&a[0]>1;a[0]--);}/************************************************************************//* 大数平方根,读入大数a,结果保存在b[]数组里 *//* 需要comp()函数 *//************************************************************************/void sqrt(bignum_t b,bignum_t a){ int h,l,m,i ; memset((void*)b,0,sizeof(bignum_t)); for(i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--) for(h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1) if(comp(b,m,i-1,a))h=m-1 ; else l=m ; for(;!b[b[0]]&&b[0]>1;b[0]--); for(i=1;i<=b[0];b[i++]>>=1);}/************************************************************************//* 返回大数的长度 *//************************************************************************/int length(const bignum_t a){ int t,ret ; for(ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++); return ret>0?ret:1 ;}/************************************************************************//* 返回指定位置的数字,从低位开始数到第b位,返回b位上的数 *//************************************************************************/int digit(const bignum_t a,const int b){ int i,ret ; for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--); return ret ;}/************************************************************************//* 返回大数末尾0的个数 *//************************************************************************/int zeronum(const bignum_t a){ int ret,t ; for(ret=0;!a[ret+1];ret++); for(t=a[ret+1],ret*=DIGIT;!(t);t/=10,ret++); return ret ;}void comp(int*a,const int l,const int h,const int d){ int i,j,t ; for(i=l;i<=h;i++) for(t=i,j=2;t>1;j++) while(!(t%j)) a[j]+=d,t/=j ;}void convert(int*a,const int h,bignum_t b){ int i,j,t=1 ; memset(b,0,sizeof(bignum_t)); for(b[0]=b[1]=1,i=2;i<=h;i++) if(a[i]) for(j=a[i];j;t*=i,j--) if(t*i>DEPTH) mul(b,t),t=1 ; mul(b,t);}/************************************************************************//* 组合数 *//************************************************************************/void combination(bignum_t a,int m,int n){ int*t=new int[m+1]; memset((void*)t,0,sizeof(int)*(m+1)); comp(t,n+1,m,1); comp(t,2,m-n,-1); convert(t,m,a); delete[]t ;}/************************************************************************//* 排列数 *//************************************************************************/void permutation(bignum_t a,int m,int n){ int i,t=1 ; memset(a,0,sizeof(bignum_t)); a[0]=a[1]=1 ; for(i=m-n+1;i<=m;t*=i++) if(t*i>DEPTH) mul(a,t),t=1 ; mul(a,t);}#define SGN(x) ((x)>0?1:((x)<0?-1:0))#define ABS(x) ((x)>0?(x):-(x))int read(bignum_t a,int&sgn,istream&is=cin){ char str[MAX*DIGIT+2],ch,*buf ; int i,j ; memset((void*)a,0,sizeof(bignum_t)); if(!(is>>str))return 0 ; buf=str,sgn=1 ; if(*buf=='-')sgn=-1,buf++; for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ; for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for(i=1;i<=a[0];i++) for(a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ; for(;!a[a[0]]&&a[0]>1;a[0]--); if(a[0]==1&&!a[1])sgn=0 ; return 1 ;}struct bignum{ bignum_t num ; int sgn ; public : inline bignum() { memset(num,0,sizeof(bignum_t)); num[0]=1 ; sgn=0 ; } inline int operator!() { return num[0]==1&&!num[1]; } inline bignum&operator=(const bignum&a) { memcpy(num,a.num,sizeof(bignum_t)); sgn=a.sgn ; return*this ; } inline bignum&operator=(const int a) { memset(num,0,sizeof(bignum_t)); num[0]=1 ; sgn=SGN (a); add(num,sgn*a); return*this ; } ; inline bignum&operator+=(const bignum&a) { if(sgn==a.sgn)add(num,a.num); else if (sgn&&a.sgn) { int ret=comp(num,a.num); if(ret>0)sub(num,a.num); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memcpy(num,a.num,sizeof(bignum_t)); sub (num,t); sgn=a.sgn ; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if(!sgn) memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn ; return*this ; } inline bignum&operator+=(const int a) { if(sgn*a>0)add(num,ABS(a)); else if(sgn&&a) { int ret=comp(num,ABS(a)); if(ret>0)sub(num,ABS(a)); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memset(num,0,sizeof(bignum_t)); num[0]=1 ; add(num,ABS (a)); sgn=-sgn ; sub(num,t); } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if (!sgn)sgn=SGN(a),add(num,ABS(a)); return*this ; } inline bignum operator+(const bignum&a) { bignum ret ; memcpy(ret.num,num,sizeof (bignum_t)); ret.sgn=sgn ; ret+=a ; return ret ; } inline bignum operator+(const int a) { bignum ret ; memcpy(ret.num,num,sizeof (bignum_t)); ret.sgn=sgn ; ret+=a ; return ret ; } inline bignum&operator-=(const bignum&a) { if(sgn*a.sgn<0)add(num,a.num); else if (sgn&&a.sgn) { int ret=comp(num,a.num); if(ret>0)sub(num,a.num); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memcpy(num,a.num,sizeof(bignum_t)); sub(num,t); sgn=-sgn ; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if(!sgn)add (num,a.num),sgn=-a.sgn ; return*this ; } inline bignum&operator-=(const int a) { if(sgn*a<0)add(num,ABS(a)); else if(sgn&&a) { int ret=comp(num,ABS(a)); if(ret>0)sub(num,ABS(a)); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memset(num,0,sizeof(bignum_t)); num[0]=1 ; add(num,ABS(a)); sub(num,t); sgn=-sgn ; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if (!sgn)sgn=-SGN(a),add(num,ABS(a)); return*this ; } inline bignum operator-(const bignum&a) { bignum ret ; memcpy(ret.num,num,sizeof(bignum_t)); ret.sgn=sgn ; ret-=a ; return ret ; } inline bignum operator-(const int a) { bignum ret ; memcpy(ret.num,num,sizeof(bignum_t)); ret.sgn=sgn ; ret-=a ; return ret ; } inline bignum&operator*=(const bignum&a) { bignum_t t ; mul(t,num,a.num); memcpy(num,t,sizeof(bignum_t)); sgn*=a.sgn ; return*this ; } inline bignum&operator*=(const int a) { mul(num,ABS(a)); sgn*=SGN(a); return*this ; } inline bignum operator*(const bignum&a) { bignum ret ; mul(ret.num,num,a.num); ret.sgn=sgn*a.sgn ; return ret ; } inline bignum operator*(const int a) { bignum ret ; memcpy(ret.num,num,sizeof (bignum_t)); mul(ret.num,ABS(a)); ret.sgn=sgn*SGN(a); return ret ; } inline bignum&operator/=(const bignum&a) { bignum_t t ; div(t,num,a.num); memcpy (num,t,sizeof(bignum_t)); sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ; return*this ; } inline bignum&operator/=(const int a) { int t ; div(num,ABS(a),t); sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a); return*this ; } inline bignum operator/(const bignum&a) { bignum ret ; bignum_t t ; memcpy(t,num,sizeof(bignum_t)); div(ret.num,t,a.num); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ; return ret ; } inline bignum operator/(const int a) { bignum ret ; int t ; memcpy(ret.num,num,sizeof(bignum_t)); div(ret.num,ABS(a),t); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a); return ret ; } inline bignum&operator%=(const bignum&a) { bignum_t t ; div(t,num,a.num); if(num[0]==1&&!num[1])sgn=0 ; return*this ; } inline int operator%=(const int a) { int t ; div(num,ABS(a),t); memset(num,0,sizeof (bignum_t)); num[0]=1 ; add(num,t); return t ; } inline bignum operator%(const bignum&a) { bignum ret ; bignum_t t ; memcpy(ret.num,num,sizeof(bignum_t)); div(t,ret.num,a.num); ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ; return ret ; } inline int operator%(const int a) { bignum ret ; int t ; memcpy(ret.num,num,sizeof(bignum_t)); div(ret.num,ABS(a),t); memset(ret.num,0,sizeof(bignum_t)); ret.num[0]=1 ; add(ret.num,t); return t ; } inline bignum&operator++() { *this+=1 ; return*this ; } inline bignum&operator--() { *this-=1 ; return*this ; } ; inline int operator>(const bignum&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0); } inline int operator>(const int a) { return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0); } inline int operator>=(const bignum&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0); } inline int operator>=(const int a) { return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0); } inline int operator<(const bignum&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0); } inline int operator<(const int a) { return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0); } inline int operator<=(const bignum&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0); } inline int operator<=(const int a) { return sgn<0?(a<0?comp(num,-a)>=0:1): (sgn>0?(a>0?comp(num,a)<=0:0):a>=0); } inline int operator==(const bignum&a) { return(sgn==a.sgn)?!comp(num,a.num):0 ; } inline int operator==(const int a) { return(sgn*a>=0)?!comp(num,ABS(a)):0 ; } inline int operator!=(const bignum&a) { return(sgn==a.sgn)?comp(num,a.num):1 ; } inline int operator!=(const int a) { return(sgn*a>=0)?comp(num,ABS(a)):1 ; } inline int operator[](const int a) { return digit(num,a); } friend inline istream&operator>>(istream&is,bignum&a) { read(a.num,a.sgn,is); return is ; } friend inline ostream&operator<<(ostream&os,const bignum&a) { if(a.sgn<0) os<<'-' ; write(a.num,os); return os ; } friend inline bignum sqrt(const bignum&a) { bignum ret ; bignum_t t ; memcpy(t,a.num,sizeof(bignum_t)); sqrt(ret.num,t); ret.sgn=ret.num[0]!=1||ret.num[1]; return ret ; } friend inline bignum sqrt(const bignum&a,bignum&b) { bignum ret ; memcpy(b.num,a.num,sizeof(bignum_t)); sqrt(ret.num,b.num); ret.sgn=ret.num[0]!=1||ret.num[1]; b.sgn=b.num[0]!=1||ret.num[1]; return ret ; } inline int length() { return :: length(num); } inline int zeronum() { return :: zeronum(num); } inline bignum C(const int m,const int n) { combination(num,m,n); sgn=1 ; return*this ; } inline bignum P(const int m,const int n) { permutation(num,m,n); sgn=1 ; return*this ; }};bignum bigpow(int a,int b){ bignum ans,nw; ans+=1; nw+=a; while(b) { if(b&1) ans*=nw; nw=nw*nw; b>>=1; } return ans;}int main(){ bignum a,b,c; cin>>a>>b; cout<<"加法:"<<a+b<<endl; cout<<"减法:"<<a-b<<endl; cout<<"乘法:"<<a*b<<endl; cout<<"除法:"<<a/b<<endl; c=sqrt(a); cout<<"平方根:"<<c<<endl; cout<<"a的长度:"<<a.length()<<endl; cout<<"a的末尾0个数:"<<a.zeronum()<<endl<<endl; cout<<"组合: 从10个不同元素取3个元素组合的所有可能性为"<<c.C(10,3)<<endl; cout<<"排列: 从10个不同元素取3个元素排列的所有可能性为"<<c.P(10,3)<<endl; return 0 ;}
转载于:https://www.cnblogs.com/mochenmochen/p/5156761.html
相关资源:数据结构—成绩单生成器