Pandas数据分析

it2022-05-09  16

from datetime import timedelta from pandas import DataFrame from scipy import stats import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns path = 'links_date.csv' # Open original data parse_dates = ['start', 'end'] df = pd.read_csv(path, index_col='tmdbId', parse_dates=parse_dates) # Drop null data df.dropna(inplace=True) # Fill null data # df.fillna(0, inplace=True) # Obtain hourly data df['DELTATIME'] = df['end'] - df['start'] # Select column df = df[df['DELTATIME'] == timedelta(hours=1)] # Drop column df.drop('DELTATIME', axis=1, inplace=True) # Handle data

 

转载于:https://www.cnblogs.com/wangjingchn/p/7302504.html

相关资源:python数据分析pandas快速入门教程.pdf

最新回复(0)