Fibonacci Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 2134Accepted: 1471
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1Sample Output
0 34 626 6875Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
Stanford Local 2006[Submit] [Go Back] [Status] [Discuss]
/* 矩阵的方法。 {{F(n+1),F(n)}, {F(n),F(n-1)}}={{1,1} ^n {1,0}} 令A(n)表示一个矩阵序列 A(n)={{F(n),F(n-1)}, {F(n-1),F(n-2)}那么A(2)={{1,1},{1,0}},由那个表达式得到:A(n)=A(2)^(n-1),A(2)是己知的2*2矩阵,现在的问题就是如何求 A(2)^n因为方阵的乘法有结合律,所以A(2)^n=A(2)^(n/2)*A(2)^(n/2),不妨设n是偶数 所以求A(n)就可以化成求A(n/2)并作一次乘法,所以递归方程是:T(n)=T(n/2)+O(1) */ // 5144566 11410 3070 Accepted 204K 0MS C++ 1049B 2009-05-13 10:13:17 // 用矩阵做Fibonacci数 #include < iostream > #define MAX 2 using namespace std; typedef struct node { int matrix[MAX][MAX]; }Matrix; Matrix unit,init,result; int n; void Init() // 初始化 { int i,j; for (i = 0 ;i < 2 ;i ++ ) for (j = 0 ;j < 2 ;j ++ ) { init.matrix[i][j] = 1 ; unit.matrix[i][j] = (i == j); } init.matrix[ 1 ][ 1 ] = 0 ; } Matrix Mul(Matrix a,Matrix b) // 矩阵乘法 { Matrix c; int i,j,k; for (i = 0 ;i < 2 ;i ++ ) for (j = 0 ;j < 2 ;j ++ ) { c.matrix[i][j] = 0 ; for (k = 0 ;k < 2 ;k ++ ) c.matrix[i][j] += a.matrix[i][k] * b.matrix[k][j]; if (c.matrix[i][j] >= 10000 ) // 取余 c.matrix[i][j] %= 10000 ; } return c; } Matrix Cal( int exp) // 求幂 { Matrix p,q; p = unit; q = init; while (exp != 1 ) { if (exp & 1 ) { exp -- ; p = Mul(p,q); } else { exp >>= 1 ; q = Mul(q,q); } } p = Mul(p,q); return p; } int main() { while (scanf( " %d " , & n) != EOF && n !=- 1 ) { if (n == 0 ) { printf( " 0\n " ); continue ; } if (n == 2 || n == 1 ) { printf( " 1\n " ); continue ; } Init(); result = Cal(n - 1 ); // 求n-1次幂就好 printf( " %d\n " ,result.matrix[ 0 ][ 0 ]); } return 0 ; }
转载于:https://www.cnblogs.com/forever4444/archive/2009/05/13/1455684.html
相关资源:数据结构—成绩单生成器