1、bar() —— 绘制柱状图
plt.bar(x,y,align="center",color="b",tick_label=["a","b","c","d","e"],alpha=0.6)参数说明:
x:表示x轴上数据的类别 y:每种数据的类别的数量 align:柱体对齐方式 color:柱体颜色 tick_label:刻度标签值 alpha:柱体透明度代码实例:
import matplotlib.pyplot as plt x = [i for i in range(1,9)] y = [3,1,4,5,8,9,7,6] plt.bar(x,y,align="center",color="c",tick_label=["q","a","c","e","r","j","b","p"],hatch="/") plt.show()图像输出:
2、barh() —— 绘制条形图
plt.barh(x,y)参数说明:
x:表示y轴上数据的类别 y:表示每种数据类别的数量代码实例:
import matplotlib.pyplot as plt x = [i for i in range(1,9)] y = [3,1,4,5,8,9,7,6] plt.barh(x,y,align="center",color="c",tick_label=["q","a","c","e","r","j","b","p"],hatch="/") plt.show()图像输出:
3、hist() —— 绘制直方图
plt.hist(x)参数说明:
x:x轴上数据的输入值代码实例:
import matplotlib.pyplot as plt import numpy as np x = np.random.randint(0,10,100) bins = range(0,11) plt.hist(x,bins=bins,color="g",histtype="bar",rwidth=1,alpha=0.6,edgecolor = 'k') plt.show()输出图像:
4、pie() —— 绘制饼图
plt.pie(x)代码实例:
import matplotlib.pyplot as plt kinds = ["Apple", "Bananas", "Watermelons", "Oranges"] colors = ["#e41a1c","#377eb8","#4daf4a","#984ea3"] nums = [0.05,0.45,0.2,0.3] plt.pie(nums,labels=kinds,autopct="%3.1f%%",startangle=60,colors=colors) plt.show()图像输出:
5、polar() —— 绘制极线图
plt.polar(theta,r)参数说明:
theta:每个标记所在射线与极径的夹角 r:每个标记到原点的距离代码实例:
import matplotlib.pyplot as plt import numpy as np slices = 12 theta = np.linspace(0.0,2*np.pi,slices,endpoint=False) r = 30*np.random.rand(slices) plt.polar(theta,r,color="chartreuse",linewidth=2,marker="*",mfc="b",ms=10) plt.show()图像输出:
6、scater() —— 绘制气泡图
plt.scatter(x,y)参数说明:
x:x轴上的数值 y:y轴上的数值 s:散点标记的大小 c:散点标记的颜色 cmap:将浮点数映射成颜色的颜色映射表代码实例:
import matplotlib.pyplot as plt import numpy as np import matplotlib a = np.random.randn(100) b = np.random.randn(100) plt.scatter(a,b,s = np.power(10*a+20*b,2),c=np.random.rand(100),cmap=matplotlib.cm.RdYlBu,marker="o") plt.show()图像输出:
7、函数stem() —— 绘制棉棒图
plt.stem(x,y)参数说明:
x:指定棉棒的x轴基线上的位置 y:绘制棉棒的长度 linefmt:棉棒的样式 markerfmt:棉棒末端的样式 basefmt:指定基线的样式代码实例:
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0.5,2*np.pi,20) y = np.random.randn(20) plt.stem(x,y,linefmt="-",markerfmt="o",basefmt="-") plt.show()图像输出:
8、函数boxplot() —— 用于绘制箱线图
plt.boxplot(x)代码实例:
import matplotlib.pyplot as plt import numpy as np x = np.random.randn(1000) plt.boxplot(x) plt.grid(axis="y",ls=":",lw=1,color="grey",alpha=0.4) plt.show()图像输出:
9、函数errorbar() —— 绘制误差棒图
plt.errorplot(x,y,yerr=a,xerr=b)参数说明:
x:数据点的水平位置 y:数据点的垂直位置 yerr:y轴方向的数据点误差计算方法 xerr:x轴方向的数据点误差计算方法代码实例:
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0.1,0.6,6) y = np.exp(x) plt.errorbar(x,y,fmt="bo:",yerr=0.2,xerr=0.02) plt.xlim(0,0.7) plt.show()图像输出:
转载于:https://www.cnblogs.com/circleyuan/p/10350167.html
相关资源:Python使用统计函数绘制简单图形实例代码