Pattern Recognition and Machine Learning

it2022-05-09  36

1. Introduction

2. Probability Distributions

3. Linear Models for Regression

4. Linear Models for Classification

5. Neural Networks

6. Kernel Methods

7. Sparse Kernel Machines

8. Graphical Models

9. Mixture Models and EM

10. Approximate Inference

11. Sampling Methods

12. Coninuous Latent Variables

13. Sequential Data

14. Combining Models

转载于:https://www.cnblogs.com/kuiyuan/archive/2011/08/29/2157366.html

相关资源:Pattern Recognition and Machine Learning. Bishop. 完整版pdf

最新回复(0)