1. Lookaside结构
频繁的申请和回收内存,会导致在内存上产生大量的内存“空洞”,从而导致最终无法申请内存。DDK为程序员提供了Lookaside结构来解决这个问题。
我们可以将Lookaside对象看成是一个内存容器。在初始化的时候,它先向Windows申请了一块比较大的内存。以后程序员每次申请内存的时候,不是直接向Windows申请内存,而是想Lookaside对象申请内存。Looaside会智能的避免产生内存“空洞”。如果Lookaside对象内部内存不够用时,它会向操作系统申请更多的内存。
Lookaside一般会在以下情况下使用:
1. 程序员每次申请固定大小的内存。
2. 申请和回收的操作十分频繁。
要使用Looaside对象,首先要初始化Lookaside对象,有以下两个函数可以使用:
(1)VOID ExInitializeNPagedLookasideList( IN PNPAGED_LOOKASIDE_LIST Lookaside, IN PALLOCATE_FUNCTION Allocate OPTIONAL, IN PFREE_FUNCTION Free OPTIONAL, IN ULONG Flags, IN SIZE_T Size, IN ULONG Tag, IN USHORT Depth );
(2)VOID ExInitializePagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside, IN PALLOCATE_FUNCTION Allocate OPTIONAL, IN PFREE_FUNCTION Free OPTIONAL, IN ULONG Flags, IN SIZE_T Size, IN ULONG Tag, IN USHORT Depth );
初始化玩Lookaside对象后,可以进行申请内存的操作了:
(1)PVOID ExAllocateFromNPagedLookasideList( IN PNPAGED_LOOKASIDE_LIST Lookaside );
(2)PVOID ExAllocateFromPagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside );
对Lookaside对象回收内存:
(1)VOID ExFreeToNPagedLookasideList( IN PNPAGED_LOOKASIDE_LIST Lookaside, IN PVOID Entry );
(2)VOID ExFreeToPagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside, IN PVOID Entry );
在使用完Lookaside对象后,要删除Lookaside对象:
(1)VOID ExDeleteNPagedLookasideList( IN PNPAGED_LOOKASIDE_LIST Lookaside );
(2) VOID ExDeletePagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside );
测试代码:
#pragma INITCODE
VOID LookasideTets()
{
KdPrint(("进入LookasideTest函数!\n"));
PAGED_LOOKASIDE_LIST Lookaside;
ExInitializePagedLookasideList(&Lookaside, NULL, NULL, 0, sizeof(MYDATASTRUCT), 'abcd', 0);
PMYDATASTRUCT pMyData[50];
for (int i=0; i<50; i++)
{
pMyData[i] = (PMYDATASTRUCT)ExAllocateFromPagedLookasideList(&Lookaside);
if ((i+1) == 0)
{
KdPrint(("申请了 %d 个数据了!\n", ++i));
}
}
for (int i=0; i<50; i++)
{
ExFreeToPagedLookasideList(&Lookaside, pMyData[i]);
pMyData[i] = NULL;
if ((i+1) == 0)
{
KdPrint(("释放了 %d 个数据的内存了!\n", ++i));
}
}
ExDeletePagedLookasideList(&Lookaside);
}
2.运行时函数
(1)内存间复制(非重叠)
VOID RtlCopyMemory( IN VOID UNALIGNED *Destination, IN CONST VOID UNALIGNED *Source, IN SIZE_T Length );
(2)内存间复制(可重叠)
VOID RtlMoveMemory( IN VOID UNALIGNED *Destination, IN CONST VOID UNALIGNED *Source, IN SIZE_T Length );
(3)填充内存
VOID RtlFillMemory( IN VOID UNALIGNED *Destination, IN SIZE_T Length, IN UCHAR Fill );
VOID RtlZeroMemory( IN VOID UNALIGNED *Destination, IN SIZE_T Length );
(4)内存比较
SIZE_T RtlCompareMemory( IN CONST VOID *Source1, IN CONST VOID *Source2, IN SIZE_T Length );
ULONG RtlEqualMemory( CONST VOID *Source1, CONST VOID *Source2, SIZE_T Length );
测试代码:
#define BUFFER_SIZE 1024
#pragma INITCODE
VOID RtlTest()
{
KdPrint(("进入RtlTest函数!\n"));
PUCHAR pBuffer1 = (PUCHAR)ExAllocatePool(PagedPool, BUFFER_SIZE);
RtlZeroMemory(pBuffer1, BUFFER_SIZE);
PUCHAR pBuffer2 = (PUCHAR)ExAllocatePool(PagedPool, BUFFER_SIZE);
RtlFillMemory(pBuffer2, BUFFER_SIZE, 0xAA);
RtlCopyMemory(pBuffer1, pBuffer2, BUFFER_SIZE);
if (RtlEqualMemory(pBuffer1, pBuffer2, BUFFER_SIZE))
{
KdPrint(("两块内存块数据一样!\n"));
for(int i=0; i<BUFFER_SIZE; i++)
{
KdPrint(("X", pBuffer1[i]));
}
}
else
{
KdPrint(("两块内存块数据不一样!\n"));
}
KdPrint(("离开RtlTest函数!\n"));
}
转载于:https://www.cnblogs.com/forlina/archive/2011/07/25/2116191.html
相关资源:windows驱动开发技术详解-part2