Codeforces Round #368 (Div. 2)

it2022-05-23  76

5/5

失踪多天发一下CF的题解,突然发现CF题解评论区一堆大神在晒解法,我等渣渣就顺手膜拜了一发,学了不少姿势,以后一打完CF就去评论区找姿势好了。。。。。。

最近有一个感悟,就是不要让别人告诉你一道题的完整思路比较好,最后是懂得大致的解法,自己将所有实现细节都推导一遍,然后再看别人是怎么实现的,这样学到的更多,以前我都是看别人思路看别人的代码,然后发现自己的代码和别人的好像长得一样,原来我顺手把别人的代码copy到脑海中,这样印象不是很深刻,要自己推导实现一遍,然后在学习别人的代码和思路比较好。

 

题A A. Brain's Photos

题意:G、B、W输出“#Black&White”,否则输出“#Color”

题解:略

 

题B B. Bakery

题意:告诉你k个地方不能开面包店,然后剩下n-k个地方里面开,然后k个地方买面粉,问你有没有离卖面粉最短的距离开面包店。

题解:遍历卖面粉的,然后找一个非卖面粉的最短的即可,不行就输出-1。

 

题C C. Pythagorean Triples

题意:给你n,构造一个勾股数。

题解:另k^2 = n^2 + r^2 -> (k - r) * (k + r) = n ^ 2; 

(1)n<=2,无解

(2)n为偶数

k - r = 2;

k + r = n ^ 2 / 2;

解得k = n ^ 2 / 4 + 1, r = n ^ 2 / 4 - 1;

(3)n为奇数

k - r = 1;

k + r = n ^ 2;

解得k = (n ^ 2 + 1) / 2, r = (n ^ 2 - 1) / 2;

 

题D D. Persistent Bookcase

题意:给你一个n * m的书架,有四种操作:

(1)1 i j,在(i,j)上放一本书;

(2)2 i j,拿掉(i,j)上的一本书;

(3)3 i,将第i行置反

(4)4 k,回到第k个操作

题解:有两种解法(还有一种主席树,本弱不太会):

(1)dfs离线,op = {1, 2, 3},i-1操作向i操作连边,op = {4},k操作向i操作连边,然后做操作即可,记得变回去。

 

1 /*zhen hao*/ 2 #include <bits/stdc++.h> 3 using namespace std; 4 5 #define lson l, m, rt*2 6 #define rson m + 1, r, rt*2+1 7 #define X first 8 #define Y second 9 10 typedef pair<int,int> PII; 11 typedef long long LL; 12 typedef unsigned long long ULL; 13 14 const int N = 1e3 + 10, Q = 1e5 + 10; 15 16 struct Node { 17 int op, x, y; 18 } query[Q]; 19 20 vector<int> g[Q]; 21 22 int ans[Q], now; 23 bitset<N> bs[N], tmp; 24 25 void dfs(int k) { 26 int op = query[k].op, x = query[k].x, y = query[k].y, flag = 0; 27 if (op == 1) { 28 --x; --y; 29 if (bs[x][y] == 0) { flag = 1; now++; } 30 bs[x][y] = 1; 31 } 32 else if (op == 2) { 33 --x; --y; 34 if (bs[x][y] == 1) { flag = 1; now--; } 35 bs[x][y] = 0; 36 } 37 else if (op == 3) { 38 --x; 39 now -= bs[x].count(); 40 bs[x] = bs[x] ^ tmp; 41 now += bs[x].count(); 42 flag = 1; 43 } 44 // cout << k << ' ' << now << endl; 45 ans[k] = now; 46 for (int i = 0; i < (int)g[k].size(); i++) dfs(g[k][i]); 47 if (!flag) return; 48 if (op == 1) { 49 bs[x][y] = 0; 50 --now; 51 } 52 else if (op == 2) { 53 bs[x][y] = 1; 54 ++now; 55 } 56 else if (op == 3) { 57 now -= bs[x].count(); 58 bs[x] = bs[x] ^ tmp; 59 now += bs[x].count(); 60 } 61 } 62 63 int main() { 64 // freopen("case.in", "r", stdin); 65 int n, m, q; 66 cin >> n >> m >> q; 67 for (int i = 0; i < m; i++) tmp[i] = 1; 68 for (int i = 1; i <= q; i++) { 69 scanf("%d%d", &query[i].op, &query[i].x); 70 if (query[i].op < 3) scanf("%d", &query[i].y); 71 if (query[i].op == 4) g[query[i].x].push_back(i); 72 else g[i - 1].push_back(i); 73 } 74 dfs(0); 75 for (int i = 1; i <= q; i++) printf("%d\n", ans[i]); 76 return 0; 77 } 代码君

 

(2)数组在线,观察到一共只有1e5种不同的行的形态,用一个biset来记录所有可能的状态,记得pos(i,j)表示第i个操作的每一行对应每一行在biset的编号,然后有新的行的形态产生就塞到biset即可,复杂度O(nq)。

 

1 /*zhen hao*/ 2 #include <bits/stdc++.h> 3 using namespace std; 4 5 #define lson l, m, rt*2 6 #define rson m + 1, r, rt*2+1 7 #define X first 8 #define Y second 9 10 typedef pair<int,int> PII; 11 typedef long long LL; 12 typedef unsigned long long ULL; 13 14 const int N = 1e3 + 10, Q = 1e5 + 10; 15 bitset<N> bs[Q], tmp; 16 int pos[Q][N], res[Q]; 17 18 int main() { 19 // freopen("case.in", "r", stdin); 20 int n, m, q, cnt = 0; 21 scanf("%d%d%d", &n, &m, &q); 22 for (int i = 1; i <= m; i++) tmp[i] = 1; 23 for (int i = 1; i <= q; i++) { 24 int op, x, y; 25 scanf("%d%d", &op, &x); 26 if (op == 4) { 27 for (int j = 1; j <= n; j++) pos[i][j] = pos[x][j]; 28 res[i] = res[x]; 29 } 30 else { 31 for (int j = 1; j <= n; j++) pos[i][j] = pos[i - 1][j]; 32 res[i] = res[i - 1]; 33 int id = pos[i][x]; 34 if (op == 1) { 35 scanf("%d", &y); 36 if (bs[id][y] == 1) { printf("%d\n", res[i]); continue; } 37 bs[++cnt] = bs[id]; 38 bs[cnt][y] = 1; 39 res[i]++; 40 pos[i][x] = cnt; 41 } 42 if (op == 2) { 43 scanf("%d", &y); 44 if (bs[id][y] == 0) { printf("%d\n", res[i]); continue; } 45 bs[++cnt] = bs[id]; 46 bs[cnt][y] = 0; 47 res[i]--; 48 pos[i][x] = cnt; 49 } 50 if (op == 3) { 51 bs[++cnt] = bs[id]; 52 res[i] -= bs[cnt].count(); 53 bs[cnt] = bs[cnt] ^ tmp; 54 res[i] += bs[cnt].count(); 55 pos[i][x] = cnt; 56 } 57 } 58 printf("%d\n", res[i]); 59 } 60 return 0; 61 } 代码君

 

题E E. Garlands

题意:在n * m的网格上,给你k条链,一开始默认开,然后有两种操作(1)询问子矩阵的权值和,统计其中开的链的权值和,(2)将一条链置反。

题解:感觉离线做比较好,虽说在线也不会超时。

先将每一个ask操作(最多2000)记录下来,然后对于每个链维护一个res[i][j]表示i链在第j个ask里面的权值和,然后询问就可以做到O(k)。

 

1 /*zhen hao*/ 2 #include <bits/stdc++.h> 3 using namespace std; 4 5 #define lson l, m, rt*2 6 #define rson m + 1, r, rt*2+1 7 #define X first 8 #define Y second 9 10 typedef pair<int,int> PII; 11 typedef long long LL; 12 typedef unsigned long long ULL; 13 14 const int N = 2100, Q = 1e6 + 10; 15 16 struct BIT { 17 int n, m; 18 LL C[N][N]; 19 inline int lowbit(int x) { 20 return x & (-x); 21 } 22 void update(int x, int y, int d) { 23 for (int i = x; i <= n; i += lowbit(i)) 24 for (int j = y; j <= m; j += lowbit(j)) 25 C[i][j] += d; 26 } 27 LL sum(int x, int y) { 28 LL ret = 0; 29 for (int i = x; i; i -= lowbit(i)) 30 for (int j = y; j; j -= lowbit(j)) 31 ret += C[i][j]; 32 return ret; 33 } 34 } T; 35 36 struct Ask { 37 int x1, y1, x2, y2; 38 } A[N]; 39 40 struct Node { 41 int x, y, z; 42 }; 43 44 vector<Node> link[N]; 45 char s[Q][10]; 46 int sw[Q], flag[Q]; 47 LL ans[N][N]; 48 49 int main() { 50 // freopen("case.in", "r", stdin); 51 int n, m, k, q; 52 cin >> n >> m >> k; 53 T.n = n; 54 T.m = m; 55 for (int i = 0; i < k; i++) { 56 int sz, x, y, z; 57 scanf("%d", &sz); 58 while (sz--) { 59 scanf("%d%d%d", &x, &y, &z); 60 link[i].push_back((Node){x, y, z}); 61 } 62 } 63 scanf("%d", &q); 64 int cnt = 0; 65 for (int i = 0; i < q; i++) { 66 scanf("%s", s[i]); 67 if (s[i][0] == 'A') { 68 scanf("%d%d%d%d", &A[cnt].x1, &A[cnt].y1, &A[cnt].x2, &A[cnt].y2); 69 cnt++; 70 } 71 else { 72 scanf("%d", sw + i); 73 sw[i]--; 74 } 75 } 76 for (int i = 0; i < k; i++) { 77 for (int j = 0; j < (int)link[i].size(); j++) T.update(link[i][j].x, link[i][j].y, link[i][j].z); 78 for (int j = 0; j < cnt; j++) 79 ans[i][j] = T.sum(A[j].x2, A[j].y2) + T.sum(A[j].x1 - 1, A[j].y1 - 1) - T.sum(A[j].x1 - 1, A[j].y2) - T.sum(A[j].x2, A[j].y1 - 1); 80 for (int j = 0; j < (int)link[i].size(); j++) T.update(link[i][j].x, link[i][j].y, -link[i][j].z); 81 } 82 cnt = 0; 83 for (int i = 0; i < k; i++) flag[i] = 1; 84 for (int i = 0; i < q; i++) { 85 if (s[i][0] == 'A') { 86 LL res = 0; 87 for (int j = 0; j < k; j++) if (flag[j]) res += ans[j][cnt]; 88 printf("%I64d\n", res); 89 cnt++; 90 } 91 else { 92 flag[sw[i]] ^= 1; 93 } 94 } 95 return 0; 96 } 代码君

 

转载于:https://www.cnblogs.com/zhenhao1/p/5796850.html


最新回复(0)