'''
分类之交叉验证:
由于数据集的划分有不确定性,若随机划分的样本正好处于某类特殊样本,则得到的训练模型所预测的结果的可信度将受到质疑。
所以需要进行多次交叉验证,把样本空间中的所有样本均分成n份,使用不同的训练集训练模型,对不同的测试集进行测试时输出指标得分。
sklearn提供了交叉验证相关API:
import sklearn.model_selection as ms
ms.cross_val_score(模型, 输入集, 输出集, cv=折叠数, scoring=指标名)->指标值数组
交叉验证指标:
1.精确度(accuracy):分类正确的样本数/总样本数
2.查准率(precision_weighted):针对每一个类别,预测正确的样本数比上预测出来的样本数
3.召回率(recall_weighted):针对每一个类别,预测正确的样本数比上实际存在的样本数
4.f1得分(f1_weighted):2x查准率x召回率/(查准率+召回率)
在交叉验证过程中,针对每一次交叉验证,计算所有类别的查准率、召回率或者f1得分,然后取各类别相应指标值的平均数,
作为这一次交叉验证的评估指标,然后再将所有交叉验证的评估指标以数组的形式返回调用者。
'''
import numpy as np
import matplotlib.pyplot as mp
import sklearn.naive_bayes as nb
import sklearn.model_selection as ms
data = np.loadtxt(
'./ml_data/multiple1.txt', delimiter=
',', unpack=False, dtype=
'f8')
print(data.shape)
x = np.array(data[:, :-1
])
y = np.array(data[:, -1
])
# 训练集和测试集的划分 使用训练集训练 再使用测试集测试,并绘制测试集样本图像
train_x, test_x, train_y, test_y = ms.train_test_split(x, y, test_size=0.25, random_state=7
)
# 针对训练集,做5次交叉验证,若得分还不错再训练模型
model =
nb.GaussianNB()
# 精确度
score = ms.cross_val_score(model, train_x, train_y, cv=5, scoring=
'accuracy')
print(
'accuracy score=', score)
print(
'accuracy mean=', score.mean())
# 查准率
score = ms.cross_val_score(model, train_x, train_y, cv=5, scoring=
'precision_weighted')
print(
'precision_weighted score=', score)
print(
'precision_weighted mean=', score.mean())
# 召回率
score = ms.cross_val_score(model, train_x, train_y, cv=5, scoring=
'recall_weighted')
print(
'recall_weighted score=', score)
print(
'recall_weighted mean=', score.mean())
# f1得分
score = ms.cross_val_score(model, train_x, train_y, cv=5, scoring=
'f1_weighted')
print(
'f1_weighted score=', score)
print(
'f1_weighted mean=', score.mean())
# 训练NB模型,完成分类业务
model.fit(train_x, train_y)
pred_test_y =
model.predict(test_x)
# 得到预测输出,可以与真实输出作比较,计算预测的精准度(预测正确的样本数/总测试样本数)
ac = (test_y == pred_test_y).sum() /
test_y.size
print(
'预测精准度 ac=', ac)
# 绘制分类边界线
l, r = x[:, 0].min() - 1, x[:, 0].max() + 1
b, t = x[:, 1].min() - 1, x[:, 1].max() + 1
n = 500
grid_x, grid_y =
np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))
bg_x =
np.column_stack((grid_x.ravel(), grid_y.ravel()))
bg_y =
model.predict(bg_x)
grid_z =
bg_y.reshape(grid_x.shape)
# 画图
mp.figure(
'NB Classification', facecolor=
'lightgray')
mp.title('NB Classification', fontsize=16
)
mp.xlabel('X', fontsize=14
)
mp.ylabel('Y', fontsize=14
)
mp.tick_params(labelsize=10
)
mp.pcolormesh(grid_x, grid_y, grid_z, cmap=
'gray')
mp.scatter(test_x[:, 0], test_x[:, 1], s=80, c=test_y, cmap=
'jet', label=
'Samples')
mp.legend()
mp.show()
输出结果:
(400, 3
)
accuracy score= [1. 1. 1. 1. 0.98305085
]
accuracy mean= 0.9966101694915255
precision_weighted score= [1. 1. 1. 1. 0.98411017
]
precision_weighted mean= 0.996822033898305
recall_weighted score= [1. 1. 1. 1. 0.98305085
]
recall_weighted mean= 0.9966101694915255
f1_weighted score= [1. 1. 1. 1. 0.98303199
]
f1_weighted mean= 0.9966063988235516
预测精准度 ac= 0.99
转载于:https://www.cnblogs.com/yuxiangyang/p/11191404.html