#densenet原文地址 https://arxiv.org/abs/1608.06993 #densenet介绍 https://blog.csdn.net/zchang81/article/details/76155291#以下代码就是densenet在torchvision.models里的源码,为了提高自身的模型构建能力尝试分析下源代码:import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from collections
import OrderedDict
__all__ = [
'DenseNet',
'densenet121',
'densenet169',
'densenet201',
'densenet161']
model_urls =
{
'densenet121':
'https://download.pytorch.org/models/densenet121-a639ec97.pth',
'densenet169':
'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
'densenet201':
'https://download.pytorch.org/models/densenet201-c1103571.pth',
'densenet161':
'https://download.pytorch.org/models/densenet161-8d451a50.pth',
} #这个是预训练模型可以在下边的densenet121,169等里直接在pretrained=True就可以下载
def densenet121(pretrained=False, **
kwargs): #这是densenet121 返回一个在ImageNet上的预训练模型 #
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16
),
**
kwargs) #这里是模型的主要构建,使用了DenseNet类 直接就看Densenet类#
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern =
re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls[
'densenet121'])
for key
in list(state_dict.keys()):
res =
pattern.match(key)
if res:
new_key = res.group(1) + res.group(2
)
state_dict[new_key] =
state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model
#把densenet169等就删除了,和上边的结构相同。 #class DenseNet(nn.Module): #这就是densenet的主类了,看继承了nn.Modele类 #
r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper) #每个denseblock里应该,每个Layer的输出特征数,就是论文里的k #
block_config (list of 4 ints) - how many layers in each pooling block #每个denseblock里layer层数, block_config的长度表示block的个数 #
num_init_features (int) - the number of filters to learn in the first convolution layer #初始化层里卷积输出的channel数#
bn_size (int) - multiplicative factor for number of bottle neck layers #这个是在block里一个denselayer里两个卷积层间的channel数 需要bn_size*growth_rate #
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer #dropout的概率,正则化的方法 #
num_classes (int) - number of classification classes #输出的类别数,看后边接的是linear,应该最后加损失函数的时候应该加softmax,或者交叉熵,而且是要带计算概率的函数 #
"""
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16
),
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000
):
super(DenseNet, self).__init__()
# First convolution #初始化层,图像进来后不是直接进入denseblock,先使用大的卷积核,大步长,进一步压缩图像尺寸 # # 注意的是nn.Sequential的用法,ordereddict使用的方法,给layer命名,还有就是各层的排列,conv->bn->relu->pool 经过这一个操作就是尺寸就成为了1/4,数据量压缩了#
self.features =
nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=
False)),
('norm0', nn.BatchNorm2d(num_init_features)),
('relu0', nn.ReLU(inplace=
True)),
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1
)),
])) #这里使用了batchnorm2d batchnorm 最近有group norm 是否可以换 #
# Each denseblock 创建denseblock
num_features =
num_init_features
for i, num_layers
in enumerate(block_config): #根据block_config里关于每个denseblock里的layer数量产生响应的block #
block = _DenseBlock(num_layers=num_layers, num_input_features=
num_features,
bn_size=bn_size, growth_rate=growth_rate, drop_rate=
drop_rate) #这是产生一个denseblock #
self.features.add_module('denseblock%d' % (i + 1
), block) #加入到 nn.Sequential 里 #
num_features = num_features + num_layers *
growth_rate #每一个denseblock最后输出的channel,因为是dense连接所以原始的输出有,也有内部每一层的特征 #
if i != len(block_config) - 1
: #如果不是最后一层 #
trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2
) #transition层是压缩输出的特征数量为一半#
self.features.add_module('transition%d' % (i + 1
), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module(
'norm5', nn.BatchNorm2d(num_features))
# Linear layer
self.classifier =
nn.Linear(num_features, num_classes)
# Official init from torch repo.
for m
in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight.data)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1
)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x):
features =
self.features(x)
out = F.relu(features, inplace=
True)
out = F.avg_pool2d(out, kernel_size=7, stride=1).view(features.size(0), -1
)
out =
self.classifier(out)
return out
class _DenseLayer(nn.Sequential): #这是denselayer,也是nn.Seqquential,看来要好好学习用法 # def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): super(_DenseLayer, self).__init__() self.add_module('norm1', nn.BatchNorm2d(num_input_features)), #这里要看到denselayer里其实主要包括两个卷积层,而且他们的channel数值得关注 # self.add_module
('relu1', nn.ReLU(inplace=True)), #其实在add_module后边的逗号可以去掉,没有任何意义,又不是构成元组徒增歧义 # self.add_module
('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), #这里注意的是输出的channel数是growth_rate # self.drop_rate = drop_rate def forward(self, x): #这里是前传,主要解决的就是要把输出整形,把layer的输出和输入要cat在一起 # new_features
= super(_DenseLayer, self).forward(x) # # if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) #加入dropout增加泛化 # return torch.cat([x, new_features], 1) #在channel上cat在一起,以形成dense连接 # class _DenseBlock(nn.Sequential): #是nn.Sequential的子类,将一个block里的layer组合起来 # def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate) #后一层的输入channel是该denseblock的输入channel数,加上该层前面层的channnel数的和 #
self.add_module
('denselayer%d' % (i + 1), layer) class _Transition(nn.Sequential): #是nn.Sequential的子类,#这个就比较容易了,也是以后自己搭建module的案例# def __init__(self, num_input_features, num_output_features): super(_Transition, self).__init__() self.add_module('norm', nn.BatchNorm2d(num_input_features)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))'pool', nn.AvgPool2d(kernel_size=2, stride=2))
大概就是这样,作为去年最好的分类框架densenet,里边有很多学习的地方。
可以给自己搭建网络提供参考。
转载于:https://www.cnblogs.com/yjphhw/p/10034265.html