python 实现简单爬虫

it2024-12-03  18

SpiderMain类

SpiderMain是整个爬虫的驱动类

主要做了以下几件事 1.初始化url管理器,初始化html下载器,初始化html分析器,初始化输出器 2.实现craw方法

craw方法

它有一个参数root_url

首先将root_url加入到url管理器中,然后进行循环直到管理器中不再有新的url为止,然后输出收集的数据 在循环中首先得到新的url,然后用html下载器下载html页面,然后用parser对html内容进行解析得到其中的urls集合和数据 将新的urls加入到url管理器中,数据加入到输出器中这里用try语句输出错误信息

SpiderMain类代码

# coding:utf8 from pachong.baike_spider import url_manager, html_downloader, html_parser, html_outputer class SpiderMain(object): def __init__(self): self.urls = url_manager.UrlManager() self.downloader = html_downloader.HtmlDownloader() self.parser = html_parser.HtmlParser() self.outputer = html_outputer.HtmlOutputer() def craw(self, root_url): count = 1 self.urls.add_new_url(root_url) while self.urls.has_new_url(): try: new_url = self.urls.get_new_url() print("craw %d : %s" % (count, new_url)) html_cont = self.downloader.download(new_url) new_urls, new_data = self.parser.parse(new_url, html_cont) self.urls.add_new_urls(new_urls) self.outputer.collect_data(new_data) if count == 10: break count = count + 1 except Exception as e: print(str(e)) self.outputer.output_html() if __name__ == "__main__": root_url = "https://baike.baidu.com/item/Python/407313" obj_spider = SpiderMain() obj_spider.craw(root_url)

UrlManager类

UrlManager是对url进行管理的类

它主要通过两个集合来对url进行管理new_urls中存放新的urlold_urls中存放就的url以防造成死循环

add_new_url方法

这个方法有一个参数url如果其为None则直接返回,如果url不在新url集合中也不在旧url集合中则将其加到新url的集合中

UrlManager代码

# coding:utf8 class UrlManager(object): def __init__(self): self.new_urls = set() self.old_urls = set() def add_new_url(self, url): if url is None: return if url not in self.new_urls and url not in self.old_urls: self.new_urls.add(url) def add_new_urls(self, urls): if urls is None or len(urls) == 0: return for url in urls: self.add_new_url(url) def has_new_url(self): return len(self.new_urls) != 0 def get_new_url(self): new_url = self.new_urls.pop() self.old_urls.add(new_url) return new_url

HtmlDownloader类

该类是用来下载html页面的 这里因为还不熟悉requests库所以用的是urllib,这里用urlopen来请求对应url

HtmlDownloader代码

# coding:utf8 from urllib import request class HtmlDownloader(object): def download(self, url): if url is None: return None res = request.urlopen(url) if res.getcode() != 200: return None return res.read()

HtmlParser类

该类利用BeautifulSoup解析html

1.首先生成BeautifulSoup对象 2.利用1中对象解析出该页面的url,这里需要分析页面的结构,利用re模块进行正则表达式的匹配,最后利用urllib生成完整的url 3.利用1中对象解析出一张数据表

HtmlParser代码

# coding:utf8 import re import urllib.parse from bs4 import BeautifulSoup class HtmlParser(object): def parse(self, page_url, html_cont): if page_url is None or html_cont is None: return soup = BeautifulSoup(html_cont, 'html.parser', from_encoding='utf-8') new_urls = self._get_new_urls(page_url, soup) new_data = self._get_new_data(page_url, soup) return new_urls, new_data def _get_new_urls(self, page_url, soup): new_urls = set() # format /item/.... links = soup.find_all('a', href=re.compile(r'/item/')) #print(links) for link in links: new_url = link['href'] new_full_url = urllib.parse.urljoin(page_url, new_url) new_urls.add(new_full_url) #print(new_full_url) return new_urls def _get_new_data(self, page_url, soup): res_data = {'url': page_url} # <dd class="lemmaWgt-lemmaTitle-title"> <h1>Python</h1> title_node = soup.find('dd', class_='lemmaWgt-lemmaTitle-title').find('h1') res_data['title'] = title_node.get_text() # <div class="lemma-summary" label-module="lemmaSummary"> summary_node = soup.find('div', class_='lemma-summary') res_data['summary'] = summary_node.get_text() return res_data

HtmlOutputer类

这是输出数据的类

目的是组织数据,注意编码

HtmlOutputer代码

# coding:utf8 class HtmlOutputer(object): def __init__(self): self.datas = [] def collect_data(self, data): if data is None: return self.datas.append(data) def output_html(self): fout = open('output.html', 'w', encoding='utf-8') fout.write('<html>') fout.write("<head><meta http-equiv=\"content-type\" content=\"text/html;charset=utf-8\"></head>") fout.write('<body>') fout.write('<table>') for data in self.datas: fout.write('<tr>') fout.write('<td>%s</td>' % data['url']) fout.write('<td>%s</td>' % data['title']) fout.write('<td>%s</td>' % data['summary']) fout.write('</tr>') fout.write('</table>') fout.write('</body>') fout.write('</html>') fout.close()

转载于:https://www.cnblogs.com/tclan126/p/8811190.html

相关资源:基于 Python 实现微信公众号爬虫
最新回复(0)