多项式 展开式 迈克劳林级数 x的范围
\[\frac{1}{1-x}\]\[1 + x + x^2 ... x^n\]\[\sum_{n=0}^{\infty}x^n\]\[\frac{1}{1+x}\]\[1 - x + x^2 - x^3 ... (-1)^nx^n\]\[\sum_{n=0}^{\infty}(-1)^nx^n\]\[e^x\]\[1 + x + \frac{x^2}{2!}+\frac{x^3}{3!} ... \frac{x^n}{n!}\]\[\sum_{n=0}^{\infty}\frac{x^n}{n!}\]\[all\]\[sinx\]\[x - \frac{x^3}{3!} +\frac{x^5}{5!} ... (-1)^n\frac{x^{2n+1}}{(2n+1)!}\]\[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}\]\[all\]\[cosx\]\[1 - \frac{x^2}{2!} + \frac{x^4}{4!} ... \frac{x^{2n}}{(2n)!}\]\[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}\]\[all\]\[ln(1+x)\]\[x - \frac{x^2}{2} + \frac{x^3}{3} ... \frac{x^n}{n}\]\[\sum_{n=1}^{\infty}(-1)^{n+1}\frac{x^n}{n}\]\[ [-1,1] \]\[(tanx)^{-1}\]\[x - \frac{x^3}{3} + \frac{x^5}{5} ... (-1)^{n}\frac{x^{2n+1}}{2n+1}\]\[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}\]
转载于:https://www.cnblogs.com/moonlord/p/5949131.html
相关资源:一些次常用函数的泰勒(麦克劳林)展开式
转载请注明原文地址: https://win8.8miu.com/read-1543964.html