Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
5 4 3 4 2 1 4
Sample Output
1
题解:
dp斜率优化
首先dp方程比较显然,dp[i]表示前i个玩具都装进箱中的最小费用
设s[i]表示玩具c[i]的前缀和
dp[i]=min{dp[j]+(i-j+1+s[i]-s[j]-L)²} st.0≤j<i
令t[i]=s[i]+i
则方程可以写成dp[i]=min{dp[j]+(t[i]-t[j]-L-1)²}
相当于枚举j求j+1到i装一箱后的费用最小值
可这样复杂度是O(n²),需要进行斜率优化
设k<j且方案j比k更优
dp[j]+(t[i]-t[j]-L-1)²≤dp[k]+(t[i]-t[k]-L-1)²
将平方拆开并化简可得出(dp[j]+t[j]²)-(dp[k]+t[k]²)/(t[j]-t[k])≤2(t[i]-L-1)
想象一个平面上有许多点,点i的纵坐标为(dp[i]+t[i]²),横坐标为t[i]
那么上面的式子也就是说点j与点k连线的斜率≤2(t[i]-L-1)
那么我们可以维护一个下凸包(用队列),不断判断,删点、加点,最优决策在队首(具体见代码)
注意:
不要忘记dp[0],需要先加到队列中。因为这个WA了好几次……
代码:
1 #include<cstdio>
2 #include<iostream>
3 using namespace std;
4
5 const int MAXN=
50005;
6 long long s[MAXN],t[MAXN],dp[MAXN];
7 struct Point
8 {
9 long long x,y;
10 int num;
11 }q[MAXN*
2];
12 int head,tail;
13
14 bool check(Point a,Point b,
long long c)
15 {
16 return b.y-a.y>(b.x-a.x)*
c;
17 }
18 bool check2(Point a,Point b,Point c)
19 {
20 return (b.y-a.y)*(c.x-b.x)<(c.y-b.y)*(b.x-
a.x);
21 }
22
23 int main()
24 {
25 int n,L,i,j,c;
26 long long w;
27 Point np;
28 scanf(
"%d%d",&n,&
L);
29 s[
0]=
0;
30 for(i=
1;i<=n;i++
)
31 scanf(
"%d",&c),s[i]=s[i-
1]+c,t[i]=s[i]+
i;
32
33 dp[
0]=
0;
34 head=tail=
0;
35 np.x=
0;np.y=
0;np.num=
0;
36 q[tail++]=
np;
37 for(i=
1;i<=n;i++
){
38 w=
2*(t[i]-L-
1);
39 while(head<tail-
1 && !check(q[head],q[head+
1],w)) head++
;
40
41 j=
q[head].num;
42 dp[i]=dp[j]+(t[i]-t[j]-L-
1)*(t[i]-t[j]-L-
1);
43
44 np.x=t[i];np.y=dp[i]+t[i]*t[i];np.num=
i;
45 while(head<tail-
1 && !check2(q[tail-
2],q[tail-
1],np)) tail--
;
46 q[tail++]=
np;
47 }
48 printf(
"%lld\n",dp[n]);
49
50 return 0;
51 }
View Code
转载于:https://www.cnblogs.com/lindalee/p/7424397.html
相关资源:数据结构—成绩单生成器