python中判断素数的函数

it2025-05-04  16

来看这一种判断素数(质数)的函数:

form math import sart def is_prime(n): if n==1: return False for i in range(2, int(sqrt(n) + 1)): if n % i == 0: return False return True

看起来,这是一种比较优秀的方法了,因为通过sqrt()函数减少了开方级的计算量。 再来看:

def is_prime(number): if number > 1: if number == 2: return True if number % 2 == 0: return False for current in range(3, int(math.sqrt(number) + 1), 2): if number % current == 0: return False return True return False

咋一看,这一次的代码看起来更多。但是,计算量却又在原来的基础上又几乎减少一半。高明之处就在这一句:if number % 2 == 0:,其实这一句就一部将2以及所有合数因子给排除掉了,所以在这一句range(3, int(math.sqrt(number) + 1), 2)中,直接从3起步,步长为2.在range()函数产生的序列是[3,5,7,9,...],比原来由range(2, int(sqrt(n) + 1))产生的[2,3,4,5,6,...]少了合数的部分。

转载于:https://www.cnblogs.com/busui/p/7210358.html

最新回复(0)