DZY loves Fast Fourier Transformation, and he enjoys using it.
Fast Fourier Transformation is an algorithm used to calculate convolution. Specifically, if a, b and c are sequences with length n, which are indexed from 0 to n - 1, and
We can calculate c fast using Fast Fourier Transformation.
DZY made a little change on this formula. Now
To make things easier, a is a permutation of integers from 1 to n, and b is a sequence only containing 0 and 1. Given a and b, DZY needs your help to calculate c.
Because he is naughty, DZY provides a special way to get a and b. What you need is only three integers n, d, x. After getting them, use the code below to generate a and b.
//x is 64-bit variable; function getNextX() { x = (x * 37 + 10007) % 1000000007; return x; } function initAB() { for(i = 0; i < n; i = i + 1){ a[i] = i + 1; } for(i = 0; i < n; i = i + 1){ swap(a[i], a[getNextX() % (i + 1)]); } for(i = 0; i < n; i = i + 1){ if (i < d) b[i] = 1; else b[i] = 0; } for(i = 0; i < n; i = i + 1){ swap(b[i], b[getNextX() % (i + 1)]); } }Operation x % y denotes remainder after division x by y. Function swap(x, y) swaps two values x and y.
InputThe only line of input contains three space-separated integers n, d, x (1 ≤ d ≤ n ≤ 100000; 0 ≤ x ≤ 1000000006). Because DZY is naughty, x can't be equal to 27777500.
OutputOutput n lines, the i-th line should contain an integer ci - 1.
Sample test(s) input 3 1 1 output 1 3 2 input 5 4 2 output 2 2 4 5 5 input 5 4 3 output 5 5 5 5 4 题意:RT 思路:由于b序列一定仅仅含0或1,那么含0的是没有意义的 直接for就好了,然后用一个数组is[]记录前多少个b序列为1的位置 每次要找最大值的时候。假设is[]数组的个数小于一个常数。就枚举is数组 否则直接从大到小枚举最大值就好了转载于:https://www.cnblogs.com/bhlsheji/p/5205293.html