hdu 4602 Partition (概率方法)

it2025-10-19  7

Partition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2472    Accepted Submission(s): 978 Problem Description Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have   4=1+1+1+1   4=1+1+2   4=1+2+1   4=2+1+1   4=1+3   4=2+2   4=3+1   4=4 totally 8 ways. Actually, we will have f(n)=2 (n-1) after observations. Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2 (n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.   Input The first line contains a single integer T(1≤T≤10000), indicating the number of test cases. Each test case contains two integers n and k(1≤n,k≤10 9).   Output Output the required answer modulo 10 9+7 for each test case, one per line.   Sample Input 2 4 2 5 5   Sample Output 5 1

对于1 <= k < n,我们能够等效为n个点排成一列,并取出当中的连续k个,这连续的看K个两端断开;

1、若取得是这K个点包含端点(我们仅仅考虑一个端点的情况),还剩下(n-k-1)个间隔,

每一个间隔有断开和闭合两种状态,故有2^(n-k-1),最后乘以2;

2、若取得是这K个点不包含端点,这连续的K个点有(n-k-1)种取法,还剩下(n-k-2)个间隔,

故有2^(n-k-2)*(n-k-1);

总计2 ∗ 2^(n – k − 1) + 2^(n – k − 2) ∗ (n – k − 1) = (n – k + 3) * 2^(n – k − 2)。 

#include"stdio.h" #include"string.h" #include"queue" #include"vector" #include"algorithm" using namespace std; #define LL __int64 const int mod=1000000007; int main() { int T,i,n,k; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&k); if(n<k) printf("0\n"); else if(n==k) printf("1\n"); else { LL d=n-k,s1,t; if(d==1) printf("2\n"); else { s1=d+3; d-=2; LL aa=2,tmp=1; while(d) { if(d&1) tmp*=aa; d/=2; aa=(aa*aa)%mod; tmp%=mod; } printf("%I64d\n",(tmp*s1)%mod); } } } return 0; }

转载于:https://www.cnblogs.com/bhlsheji/p/4065832.html

最新回复(0)