A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
Input:
1 - 0 - 0 -
0 -
1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
Output: 6
Explanation: Given three people living at (0,0), (0,4), and (2,2
):
The point (0,2
) is an ideal meeting point, as the total travel distance
of 2+2+2=6 is minimal. So
return 6.
题意:
给定一个01矩阵,1表示建筑,0表示空地。现在要求选择一处空地作为集合地点,要求离所有建筑之和最小。求最小距离之和。距离计算以曼哈顿距离为准。
转载于:https://www.cnblogs.com/liuliu5151/p/10873419.html
相关资源:数据结构—成绩单生成器