python matplot.pyplot.plot() 的用法 plt.plot()(绘制y相对于x的线条和或标记。)

it2022-05-05  65

文章目录

docfrom matplotlib.pyplot.pyfrom matplotlib.axes._axes.py 官网说明:引用

doc

from matplotlib.pyplot.py

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.plot) def plot(*args, scalex=True, scaley=True, data=None, **kwargs): return gca().plot( *args, scalex=scalex, scaley=scaley, **({"data": data} if data is not None else {}), **kwargs)

from matplotlib.axes._axes.py

# Uses a custom implementation of data-kwarg handling in # _process_plot_var_args. 在#_process_plot_var_args中使用自定义的数据扭曲处理实现。 @docstring.dedent_interpd def plot(self, *args, scalex=True, scaley=True, data=None, **kwargs): """ Plot y versus x as lines and/or markers. 绘制y相对于x的线条和/或标记。 Call signatures:: 调用签名 plot([x], y, [fmt], *, data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) The coordinates of the points or line nodes are given by *x*, *y*. 点或线节点的坐标由* x *,* y *给出。 The optional parameter *fmt* is a convenient way for defining basic formatting like color, marker and linestyle. It's a shortcut string notation described in the *Notes* section below. 可选参数* fmt *是定义基本格式(如颜色,标记和线条样式)的便捷方法。 这是下面* Notes *部分中描述的快捷方式字符串符号。 >>> plot(x, y) # plot x and y using default line style and color 使用默认线条样式和颜色绘制x和y >>> plot(x, y, 'bo') # plot x and y using blue circle markers 使用蓝色圆圈标记绘制x和y >>> plot(y) # plot y using x as index array 0..N-1 使用x作为索引数组0..N-1绘制y >>> plot(y, 'r+') # ditto, but with red plusses 同上,但带有红色加号 You can use `.Line2D` properties as keyword arguments for more control on the appearance. Line properties and *fmt* can be mixed. The following two calls yield identical results: 您可以将.Line2D属性用作关键字参数,以更好地控制外观。 线属性和* fmt *可以混合使用。 以下两个调用产生相同的结果: >>> plot(x, y, 'go--', linewidth=2, markersize=12) >>> plot(x, y, color='green', marker='o', linestyle='dashed', ... linewidth=2, markersize=12) When conflicting with *fmt*, keyword arguments take precedence. 与* fmt *冲突时,关键字参数优先。 **Plotting labelled data 绘制标签数据** There's a convenient way for plotting objects with labelled data (i.e. data that can be accessed by index ``obj['y']``). Instead of giving the data in *x* and *y*, you can provide the object in the *data* parameter and just give the labels for *x* and *y*:: 有一种方便的方法可以绘制带有标签数据的对象(即可以通过索引``obj ['y']''访问的数据)。 您可以在* data *参数中提供对象,而不必为* x *和* y *提供数据,而只需为* x *和* y *提供标签: >>> plot('xlabel', 'ylabel', data=obj) All indexable objects are supported. This could e.g. be a `dict`, a `pandas.DataFame` or a structured numpy array. 支持所有可索引对象。 例如 是dict,pandas.DataFrame或结构化numpy数组。 **Plotting multiple sets of data 绘制多组数据** There are various ways to plot multiple sets of data. 有多种方法可以绘制多组数据。 - The most straight forward way is just to call `plot` multiple times. - 最直接的方法是多次调用“ plot”。 Example: >>> plot(x1, y1, 'bo') >>> plot(x2, y2, 'go') 示例: import numpy as np import matplotlib.pyplot as plt x1=np.array([1,2,3]) y1=np.array([1,2,3]) x2=np.array([1,2,3]) y2=np.array([5,6,7]) plt.plot(x1, y1, 'bo') plt.plot(x2, y2, 'go') - Alternatively, if your data is already a 2d array, you can pass it directly to *x*, *y*. A separate data set will be drawn for every column. 或者,如果您的数据已经是2d数组,则可以将其直接传递给* x *,* y *。 将为每一列绘制一个单独的数据集。 Example: an array ``a`` where the first column represents the *x* values and the other columns are the *y* columns:: 示例:数组“ a”,其中第一列表示* x *值,其他列为* y *列:: >>> plot(a[0], a[1:]) - The third way is to specify multiple sets of *[x]*, *y*, *[fmt]* groups:: 第三种方法是指定多组* [x] *,* y *,* [fmt] *组: >>> plot(x1, y1, 'g^', x2, y2, 'g-') In this case, any additional keyword argument applies to all datasets. Also this syntax cannot be combined with the *data* parameter. 在这种情况下,任何其他关键字参数都适用于所有数据集。 同样,此语法不能与* data *参数结合使用。 By default, each line is assigned a different style specified by a 'style cycle'. The *fmt* and line property parameters are only necessary if you want explicit deviations from these defaults. Alternatively, you can also change the style cycle using the 'axes.prop_cycle' rcParam. 默认情况下,为每行分配一个由“样式循环”指定的不同样式。 * fmt *和line属性参数仅在您希望与这些默认值明显不同时才需要。 * 另外,您也可以使用'axes.prop_cycle'rcParam更改样式周期。 Parameters ---------- x, y : array-like or scalar The horizontal / vertical coordinates of the data points. *x* values are optional and default to `range(len(y))`. 数据点的水平/垂直坐标。 * x *值是可选的,默认为`range(len(y))`。 Commonly, these parameters are 1D arrays. 通常,这些参数是一维数组。 They can also be scalars, or two-dimensional (in that case, the columns represent separate data sets). 它们也可以是标量,也可以是二维的(在这种情况下, 列代表单独的数据集)。 These arguments cannot be passed as keywords. 这些参数不能作为关键字传递。 fmt : str, optional A format string, e.g. 'ro' for red circles. See the *Notes* section for a full description of the format strings. 格式字符串,例如 红色圆圈为“ ro”。 有关格式字符串的完整说明,请参见* Notes *部分。 Format strings are just an abbreviation for quickly setting basic line properties. All of these and more can also be controlled by keyword arguments. 格式字符串只是用于快速设置基本行属性的缩写。 所有这些以及更多这些都可以通过关键字参数来控制。 This argument cannot be passed as keyword. 此参数不能作为关键字传递。 data : indexable object, optional An object with labelled data. If given, provide the label names to plot in *x* and *y*. 具有标签数据的对象。 如果提供,请提供要在* x *和* y *中绘制的标签名称。 .. note:: Technically there's a slight ambiguity in calls where the second label is a valid *fmt*. `plot('n', 'o', data=obj)` could be `plt(x, y)` or `plt(y, fmt)`. In such cases, the former interpretation is chosen, but a warning is issued. 从技术上讲,第二个标签是有效的* fmt *时,通话中存在一些歧义。 plot('n','o',data = obj)`可以是`plt(x,y)`或`plt(y,fmt)`。 在这种情况下,选择前一种解释,但会发出警告。 You may suppress the warning by adding an empty format string `plot('n', 'o', '', data=obj)`. 您可以通过添加一个空的格式字符串`plot('n','o','',data = obj)来抑制该警告。 Other Parameters ---------------- scalex, scaley : bool, optional, default: True These parameters determined if the view limits are adapted to the data limits. The values are passed on to `autoscale_view`. 这些参数确定视图限制是否适合数据限制。 这些值将传递给“ autoscale_view”。 **kwargs : `.Line2D` properties, optional *kwargs* are used to specify properties like a line label (for auto legends), linewidth, antialiasing, marker face color. * kwargs *用于指定属性,例如线标签(用于自动图例),线宽,抗锯齿,标记面颜色。 Example:: >>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2) >>> plot([1,2,3], [1,4,9], 'rs', label='line 2') If you make multiple lines with one plot command, the kwargs apply to all those lines. 如果使用一个plot命令制作多条线,则kwarg应用于所有这些线。 Here is a list of available `.Line2D` properties: 这是一个可用的.Line2D属性的列表: %(_Line2D_docstr)s Returns ------- lines A list of `.Line2D` objects representing the plotted data. 代表所绘制数据的.Line2D对象列表。 See Also -------- scatter : XY scatter plot with markers of varying size and/or color (sometimes also called bubble chart). 带有不同大小和/或颜色的标记的XY散点图 (有时也称为气泡图)。 Notes ----- **Format Strings** A format string consists of a part for color, marker and line:: fmt = '[marker][line][color]' 格式字符串由颜色,标记和线条组成:fmt ='[marker] [line] [color]' Each of them is optional. If not provided, the value from the style cycle is used. Exception: If ``line`` is given, but no ``marker``, the data will be a line without markers. 它们每个都是可选的。 如果未提供,则使用样式周期中的值。 例外:如果给出了“ line”,但没有给出“ marker”,则数据将是没有标记的一行。 Other combinations such as ``[color][marker][line]`` are also supported, but note that their parsing may be ambiguous. 还支持其他组合,例如“ [color] [marker] [line]”,但请注意,它们的解析可能不明确。 **Markers** ============= =============================== character description ============= =============================== ``'.'`` point marker ``','`` pixel marker ``'o'`` circle marker ``'v'`` triangle_down marker ``'^'`` triangle_up marker ``'<'`` triangle_left marker ``'>'`` triangle_right marker ``'1'`` tri_down marker ``'2'`` tri_up marker ``'3'`` tri_left marker ``'4'`` tri_right marker ``'s'`` square marker ``'p'`` pentagon marker 五边形标记 ``'*'`` star marker ``'h'`` hexagon1 marker ``'H'`` hexagon2 marker ``'+'`` plus marker ``'x'`` x marker ``'D'`` diamond marker ``'d'`` thin_diamond marker ``'|'`` vline marker ``'_'`` hline marker ============= =============================== **Line Styles** ============= =============================== character description ============= =============================== ``'-'`` solid line style ``'--'`` dashed line style ``'-.'`` dash-dot line style ``':'`` dotted line style ============= =============================== Example format strings:: 'b' # blue markers with default shape 'or' # red circles '-g' # green solid line '--' # dashed line with default color '^k:' # black triangle_up markers connected by a dotted line 黑色上三角形标记,由虚线连接 **Colors** The supported color abbreviations are the single letter codes 支持的颜色缩写是单个字母代码 ============= =============================== character color ============= =============================== ``'b'`` blue ``'g'`` green ``'r'`` red ``'c'`` cyan ``'m'`` magenta ``'y'`` yellow ``'k'`` black ``'w'`` white ============= =============================== and the ``'CN'`` colors that index into the default property cycle. 以及“ CN”颜色可索引到默认属性周期。 If the color is the only part of the format string, you can additionally use any `matplotlib.colors` spec, e.g. full names (``'green'``) or hex strings (``'#008000'``). 如果颜色是格式字符串的唯一部分,则可以另外使用任何`matplotlib.colors`规范, 例如 全名(``'green''')或十六进制字符串(``'#008000'``)。 """ kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D._alias_map) lines = [*self._get_lines(*args, data=data, **kwargs)] for line in lines: self.add_line(line) self.autoscale_view(scalex=scalex, scaley=scaley) return lines

官网说明:

https://matplotlib.org/2.1.1/api/_as_gen/matplotlib.pyplot.plot.html

引用

https://blog.csdn.net/lllxxq141592654/article/details/81532855


最新回复(0)