cvRunHaarClassifierCascade的:转载:http://2000liuzhenxing.blog.163.com/blog/static/51677475200981952828662/
最近学习OpenCV的人脸检测,有cvHaarDetectObjects,此函数中又有两个函数很重要,一个cvRunHaarClassifierCascade,另一个cvSetImagesForHaarClassifierCascade。这两个函数很重要,上网看到了,就把它转过来了,希望对大家有帮助。
//此函数是一个匹配函数,根据不同的分类器(tree、stump)进行不同的匹配,返回整形值
CV_IMPL intcvRunHaarClassifierCascade( CvHaarClassifierCascade* _cascade, CvPoint pt, int start_stage ){ int result = -1; CV_FUNCNAME(”cvRunHaarClassifierCascade”);
__BEGIN__;
int p_offset, pq_offset; int i, j; double mean, variance_norm_factor; CvHidHaarClassifierCascade* cascade;
if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, “Invalid cascade pointer” );
cascade = _cascade->hid_cascade; if( !cascade ) CV_ERROR( CV_StsNullPtr, “Hidden cascade has not been created.\n” “Use cvSetImagesForHaarClassifierCascade” );
if( pt.x < 0 || pt.y < 0 || pt.x + _cascade->real_window_size.width >= cascade->sum.width-2 || pt.y + _cascade->real_window_size.height >= cascade->sum.height-2 ) //超边退出 EXIT;
p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x; pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x; mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area; variance_norm_factor = cascade->pq0[pq_offset] – cascade->pq1[pq_offset] - //左上+右下-右上-左下 cascade->pq2[pq_offset] + cascade->pq3[pq_offset]; variance_norm_factor = variance_norm_factor*cascade->inv_window_area – mean*mean; //求方差(varance) =Ex2-(Ex)2 if( variance_norm_factor >= 0. ) variance_norm_factor = sqrt(variance_norm_factor); else variance_norm_factor = 1.;
if( cascade->is_tree ) //是树形的分类器,就按照层来匹配. { CvHidHaarStageClassifier* ptr; assert( start_stage == 0 ); //start_stage==0继续
result = 1; ptr = cascade->stage_classifier;
while( ptr ) { double stage_sum = 0;
for( j = 0; j < ptr->count; j++ ) { stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j, //层判断 variance_norm_factor, p_offset ); }
if( stage_sum >= ptr->threshold ) { ptr = ptr->child; //层判断通过,到下一层. } else { while( ptr && ptr->next == NULL ) ptr = ptr->parent; //未通过,且当前子分类器没有同层分类器,没有返回上层 if( ptr == NULL ) //如果刚才已经是最顶层了. { result = 0; //返回0,退出. EXIT; } ptr = ptr->next; //指向下一个分类器. } } } else if( cascade->is_stump_based ) //如果是stump类的分类器 { for( i = start_stage; i < cascade->count; i++ ) { double stage_sum = 0;
if( cascade->stage_classifier[i].two_rects ) { for( j = 0; j < cascade->stage_classifier[i].count; j++ ) { CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; CvHidHaarTreeNode* node = classifier->node; double sum, t = node->threshold*variance_norm_factor, a, b;
sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
a = classifier->alpha[0]; b = classifier->alpha[1]; stage_sum += sum < t ? a : b; } } else { for( j = 0; j < cascade->stage_classifier[i].count; j++ ) { CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; CvHidHaarTreeNode* node = classifier->node; double sum, t = node->threshold*variance_norm_factor, a, b;
sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
if( node->feature.rect[2].p0 ) sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
a = classifier->alpha[0]; b = classifier->alpha[1]; stage_sum += sum < t ? a : b; } }
if( stage_sum < cascade->stage_classifier[i].threshold ) { //没通过.则返回负的没通过的分类器数. result = -i; EXIT; } } } else //如果不是那两种强分类器 { for( i = start_stage; i < cascade->count; i++ ) { double stage_sum = 0;
for( j = 0; j < cascade->stage_classifier[i].count; j++ ) { stage_sum += icvEvalHidHaarClassifier( cascade->stage_classifier[i].classifier + j, variance_norm_factor, p_offset ); }
if( stage_sum < cascade->stage_classifier[i].threshold ) { result = -i; EXIT; } } }
result = 1;
__END__;
return result; //返回结果}
转载于:https://www.cnblogs.com/freecloudinsky/archive/2013/05/20/3088890.html
转载请注明原文地址: https://win8.8miu.com/read-17213.html