HDU 2709 Sumsets(递推)

it2022-05-05  94

 

 

          Sumsets

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 863    Accepted Submission(s): 339

Problem Description Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).  

 

Input A single line with a single integer, N.  

 

Output The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).  

 

Sample Input 7  

 

Sample Output 6  

 

Source USACO 2005 January Silver  

 

Recommend teddy       分析(转):

设a[n]为和为 n 的种类数;

根据题目可知,加数为2的N次方,即 n 为奇数时等于它前一个数 n-1 的种类数 a[n-1] ,若 n 为偶数时分加数中有无 1 讨论,即关键是对 n 为偶数时进行讨论:

1.n为奇数,a[n]=a[n-1]

2.n为偶数:

(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2];

(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n-2];

所以总的种类数为:a[n]=a[n-2]+a[n/2];

 

#include<iostream> using namespace std; int a[1000000]; int main() { int i,n; a[1]=1; a[2]=2; for(i=3;i<=1000000;i++) { if(i%2==0) { a[i]=a[i-2]+a[i/2]; if(a[i]>999999999) a[i]%=1000000000; } else a[i]=a[i-1]; } while(~scanf("%d",&n)) { printf("%d\n",a[n]); } return 0; }

 

转载于:https://www.cnblogs.com/Su-Blog/archive/2012/09/11/2680751.html

相关资源:各显卡算力对照表!

最新回复(0)