= 水平分区(根据列属性按行分)=举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。
举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。
*创建分区表,按日期的年份拆分
mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995), PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) , PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) , PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) , PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) , PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010), PARTITION p11 VALUES LESS THAN MAXVALUE );注意最后一行,考虑到可能的最大值
*创建未分区表
mysql> create table no_part_tab ( c1 int(11) default NULL, c2 varchar(30) default NULL, c3 date default NULL ) engine=myisam;*通过存储过程灌入800万条测试数据
mysql> set sql_mode=''; /* 如果创建存储过程失败,则先需设置此变量, bug? */ mysql> delimiter // /* 设定语句终结符为 //,因存储过程语句用;结束 */mysql> CREATE PROCEDURE load_part_tab() begin declare v int default 0; while v < 8000000 do insert into part_tab values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652)); set v = v + 1; end while; end // mysql> delimiter ; mysql> call load_part_tab(); Query OK, 1 row affected (8 min 17.75 sec)
mysql> insert into no_part_tab select * from part_tab; //将800万数据复制到未分区的表no_part_tab 中
Query OK, 8000000 rows affected (51.59 sec) Records: 8000000 Duplicates: 0 Warnings: 0
* 测试SQL性能
mysql> select count(*) from part_tab where c3 > date('1995-01-01') and c3 < date('1995-12-31');+----------+| count(*) |+----------+| 795181 |+----------+1 row in set (0.55 sec)
mysql> select count(*) from no_part_tab where c3 > date('1995-01-01') and c3 < date('1995-12-31'); +----------+| count(*) |+----------+| 795181 |+----------+1 row in set (4.69 sec)结果表明分区表比未分区表的执行时间少90%。
* 通过explain语句来分析执行情况
mysql > explain select count(*) from no_part_tab where c3 > date('1995-01-01') and c3 < date ('1995-12-31') \G #结尾的\G使得mysql的输出改为列模式*************************** 1. row *************************** id: 1 select_type: SIMPLE table: no_part_tab type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 8000000 #需要查询800万条记录 Extra: Using where 1 row in set (0.00 sec)
mysql> explain select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31') \G
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: part_tab type: ALLpossible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 798458 #只需要查询798458条记录 Extra: Using where 1 row in set (0.00 sec)
* 试验创建索引后情况
mysql> create index idx_of_c3 on no_part_tab (c3);Query OK, 8000000 rows affected (1 min 18.08 sec)Records: 8000000 Duplicates: 0 Warnings: 0mysql> create index idx_of_c3 on part_tab (c3);Query OK, 8000000 rows affected (1 min 19.19 sec)Records: 8000000 Duplicates: 0 Warnings: 0创建索引后的数据库文件大小列表:
2008-05-24 09:23 8,608 no_part_tab.frm 2008-05-24 09:24 255,999,996 no_part_tab.MYD 2008-05-24 09:24 81,611,776 no_part_tab.MYI 2008-05-24 09:25 0 part_tab#P#p0.MYD 2008-05-24 09:26 1,024 part_tab#P#p0.MYI 2008-05-24 09:26 25,550,656 part_tab#P#p1.MYD 2008-05-24 09:26 8,148,992 part_tab#P#p1.MYI 2008-05-24 09:26 25,620,192 part_tab#P#p10.MYD 2008-05-24 09:26 8,170,496 part_tab#P#p10.MYI 2008-05-24 09:25 0 part_tab#P#p11.MYD 2008-05-24 09:26 1,024 part_tab#P#p11.MYI 2008-05-24 09:26 25,656,512 part_tab#P#p2.MYD 2008-05-24 09:26 8,181,760 part_tab#P#p2.MYI 2008-05-24 09:26 25,586,880 part_tab#P#p3.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p3.MYI 2008-05-24 09:26 25,585,696 part_tab#P#p4.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p4.MYI 2008-05-24 09:26 25,585,216 part_tab#P#p5.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p5.MYI 2008-05-24 09:26 25,655,740 part_tab#P#p6.MYD 2008-05-24 09:26 8,181,760 part_tab#P#p6.MYI 2008-05-24 09:26 25,586,528 part_tab#P#p7.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p7.MYI 2008-05-24 09:26 25,586,752 part_tab#P#p8.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p8.MYI 2008-05-24 09:26 25,585,824 part_tab#P#p9.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p9.MYI 2008-05-24 09:25 8,608 part_tab.frm 2008-05-24 09:25 68 part_tab.par* 再次测试SQL性能
mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31');+----------+| count(*) |+----------+| 795181 |+----------+1 row in set (2.42 sec) # 为原来4.69 sec 的51%
#重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。
mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31');
+----------+ | count(*) | +----------+ | 795181 | +----------+ 1 row in set (0.86 sec)
* 更进一步的试验 ** 增加日期范围
mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1997-12-31');+----------+| count(*) |+----------+| 2396524 |+----------+1 row in set (5.42 sec)mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1997-12-31');+----------+| count(*) |+----------+| 2396524 |+----------+1 row in set (2.63 sec)
** 增加未索引字段查询
mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1996-12-31') and c2='hello';+----------+| count(*) |+----------+| 0 |+----------+1 row in set (11.52 sec)mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1996-12-31') and c2='hello';+----------+| count(*) |+----------+| 0 |+----------+1 row in set (0.75 sec)= 初步结论 = * 分区和未分区占用文件空间大致相同 (数据和索引文件) * 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间 * 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。
= 最终结论 = * 对于大数据量,建议使用分区功能。 * 去除不必要的字段 * 根据手册, 增加myisam_max_sort_file_size 会增加分区性能( mysql重建索引时允许使用的临时文件最大大小)
在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。
分成4个区,数据文件和索引文件单独存放。
分成4个区,数据文件和索引文件单独存放。
* 子分区 子分区是针对 RANGE/LIST 类型的分区表中每个分区的再次分割。再次分割可以是 HASH/KEY 等类型。
CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '', email VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2( PARTITION p0 VALUES LESS THAN (3000000) DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 VALUES LESS THAN (6000000) DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx' );对 RANGE 分区再次进行子分区划分,子分区采用 HASH 类型。 或者
CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '', email VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2( PARTITION p0 VALUES LESS THAN (3000000) DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 VALUES LESS THAN (6000000) DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx' );对 RANGE 分区再次进行子分区划分,子分区采用 KEY 类型。
[方法1] 使用ID:
mysql> ALTER TABLE np_pk -> PARTITION BY HASH( TO_DAYS(added) ) -> PARTITIONS 4;#ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function mysql> ALTER TABLE np_pk -> PARTITION BY HASH(id) -> PARTITIONS 4;Query OK, 0 rows affected (0.11 sec)Records: 0 Duplicates: 0 Warnings: 0[方法2] 将原有PK去掉生成新PK
mysql> alter table results drop PRIMARY KEY;Query OK, 5374850 rows affected (7 min 4.05 sec)Records: 5374850 Duplicates: 0 Warnings: 0mysql> alter table results add PRIMARY KEY(id, ttime); Query OK, 5374850 rows affected (7 min 4.05 sec)Records: 5374850 Duplicates: 0 Warnings: 0
转载于:https://www.cnblogs.com/mzhaox/p/11201715.html
相关资源:各显卡算力对照表!