给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。
由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
数据范围
1≤n≤500
,1≤m≤105
, 图中涉及边的边权的绝对值均不超过10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=
501,INF=
0X3f3f3f3f;
int n,m,g[N][N],dis[N];
bool st[N];
void prim(){
memset(dis,0x3f,
sizeof(dis));
int res=
0;
for(
int i=
0;i<n;i++
){
int t=-
1;
for(
int j=
1;j<=n;j++
){
if(!st[j]&&(t==-
1||dis[t]>
dis[j]))
t=
j;
}
if(i&&dis[t]==
INF){
cout<<
"impossible"<<
endl;
return ;
}
if(i)res+=
dis[t];
for(
int j=
1;j<=n;j++
)
dis[j]=
min(dis[j],g[t][j]);
st[t]=
true;
}
cout<<res<<
endl;
}
int main(
void){
cin>>n>>
m;
memset(g,0x3f,
sizeof(g));
for(
int i=
0,a,b,c;i<m;i++
){
cin>>a>>b>>
c;
g[a][b]=g[b][a]=
min(g[a][b],c);
}
prim();
return 0;
}
转载于:https://www.cnblogs.com/programyang/p/11197200.html