传送门
首先我们对 ∫ 0 ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x \int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx ∫0∞i=1∏n(ai2+x2)1dx进行裂项相消: 1 ∏ i = 1 n ( a i 2 + x 2 ) = 1 ( a 1 2 + x 2 ) ( a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 − 1 a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 × 1 a 3 2 + x 2 − 1 a 2 2 + x 2 × 1 a 3 2 + x 2 ) × 1 ∏ i = 4 n ( a i 2 + x 2 ) = … \begin{aligned} &\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{(a_1^2+x^2)(a_2^2+x^2)}\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}-\frac{1}{a_2^2+x^2})\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}\times\frac{1}{a_3^2+x^2}-\frac{1}{a_2^2+x^2}\times\frac{1}{a_3^2+x^2})\times\frac{1}{\prod\limits_{i=4}^{n}(a_i^2+x^2)}&\\ =&\dots& \end{aligned} ====i=1∏n(ai2+x2)1(a12+x2)(a22+x2)1×i=3∏n(ai2+x2)1a22−a121×(a12+x21−a22+x21)×i=3∏n(ai2+x2)1a22−a121×(a12+x21×a32+x21−a22+x21×a32+x21)×i=4∏n(ai2+x2)1… 依次裂项相消,然后看系数的规律,可以手动推 n = 2 , 3 n=2,3 n=2,3的系数看规律,也可以计算,比赛的时候我 n = 3 n=3 n=3推到一半队友看到式子和我说这个他学过然后把系数告诉我就 A A A了(队友 t x d y txdy txdy)。 每个 1 a i 2 + x 2 \frac{1}{a_i^2+x^2} ai2+x21的系数为 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) \frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)} j=1,j̸=i∏n(aj2−ai2)1,因此最后题目要求的式子久变成了下式: ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) ∫ 0 ∞ 1 a i 2 + x 2 d x = ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i 2 ∫ 0 ∞ 1 1 + ( x a i ) 2 d x = ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i ∫ 0 ∞ 1 1 + ( x a i ) 2 d x a i \begin{aligned} &\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)}\int_0^{\infty}\frac{1}{a_i^2+x^2}dx&\\ =&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i^2}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}dx&\\ =&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}d\frac{x}{a_i}& \end{aligned} ==i=1∑nj=1,j̸=i∏n(aj2−ai2)1∫0∞ai2+x21dxi=1∑nj=1,j̸=i∏n(aj2−ai2)×ai21∫0∞1+(aix)21dxi=1∑nj=1,j̸=i∏n(aj2−ai2)×ai1∫0∞1+(aix)21daix 积分符号里面的东西就是题目给的式子得到 π 2 \frac{\pi}{2} 2π,因此最后答案为 ∑ i = 1 n 1 2 × ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i \begin{aligned} &\sum\limits_{i=1}^{n}\frac{1}{2\times\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i} \end{aligned} i=1∑n2×j=1,j̸=i∏n(aj2−ai2)×ai1
