2019年牛客多校第一场B题Integration 数学

it2022-05-05  135

题目链接

传送门

思路

首先我们对 ∫ 0 ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x \int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx 0i=1n(ai2+x2)1dx进行裂项相消: 1 ∏ i = 1 n ( a i 2 + x 2 ) = 1 ( a 1 2 + x 2 ) ( a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 − 1 a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 × 1 a 3 2 + x 2 − 1 a 2 2 + x 2 × 1 a 3 2 + x 2 ) × 1 ∏ i = 4 n ( a i 2 + x 2 ) = … \begin{aligned} &\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{(a_1^2+x^2)(a_2^2+x^2)}\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}-\frac{1}{a_2^2+x^2})\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}\times\frac{1}{a_3^2+x^2}-\frac{1}{a_2^2+x^2}\times\frac{1}{a_3^2+x^2})\times\frac{1}{\prod\limits_{i=4}^{n}(a_i^2+x^2)}&\\ =&\dots& \end{aligned} ====i=1n(ai2+x2)1(a12+x2)(a22+x2)1×i=3n(ai2+x2)1a22a121×(a12+x21a22+x21)×i=3n(ai2+x2)1a22a121×(a12+x21×a32+x21a22+x21×a32+x21)×i=4n(ai2+x2)1 依次裂项相消,然后看系数的规律,可以手动推 n = 2 , 3 n=2,3 n=2,3的系数看规律,也可以计算,比赛的时候我 n = 3 n=3 n=3推到一半队友看到式子和我说这个他学过然后把系数告诉我就 A A A了(队友 t x d y txdy txdy)。 每个 1 a i 2 + x 2 \frac{1}{a_i^2+x^2} ai2+x21的系数为 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) \frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)} j=1,j̸=in(aj2ai2)1,因此最后题目要求的式子久变成了下式: ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) ∫ 0 ∞ 1 a i 2 + x 2 d x = ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i 2 ∫ 0 ∞ 1 1 + ( x a i ) 2 d x = ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i ∫ 0 ∞ 1 1 + ( x a i ) 2 d x a i \begin{aligned} &\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)}\int_0^{\infty}\frac{1}{a_i^2+x^2}dx&\\ =&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i^2}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}dx&\\ =&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}d\frac{x}{a_i}& \end{aligned} ==i=1nj=1,j̸=in(aj2ai2)10ai2+x21dxi=1nj=1,j̸=in(aj2ai2)×ai2101+(aix)21dxi=1nj=1,j̸=in(aj2ai2)×ai101+(aix)21daix 积分符号里面的东西就是题目给的式子得到 π 2 \frac{\pi}{2} 2π,因此最后答案为 ∑ i = 1 n 1 2 × ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i \begin{aligned} &\sum\limits_{i=1}^{n}\frac{1}{2\times\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i} \end{aligned} i=1n2×j=1,j̸=in(aj2ai2)×ai1

代码实现如下

#include <set> #include <map> #include <deque> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <bitset> #include <cstdio> #include <string> #include <vector> #include <cstdlib> #include <cstring> #include <cassert> #include <iostream> #include <algorithm> #include <unordered_map> using namespace std; typedef long long LL; typedef pair<LL, LL> pLL; typedef pair<LL, int> pLi; typedef pair<int, LL> pil;; typedef pair<int, int> pii; typedef unsigned long long uLL; #define lson rt<<1 #define rson rt<<1|1 #define lowbit(x) x&(-x) #define name2str(name) (#name) #define bug printf("*********\n") #define debug(x) cout<<#x"=["<<x<<"]" <<endl #define FIN freopen("D://Code//in.txt","r",stdin) #define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8; const int mod = 1e9 + 7; const int maxn = 1e5 + 7; const double pi = acos(-1); const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n; int a[maxn], inv[maxn], cnt[maxn]; LL qpow(LL x, int n) { LL res = 1; while(n) { if(n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } int main() { int tmp = qpow(2, mod - 2); while(~scanf("%d", &n)) { for(int i = 1; i <= n; ++i) { scanf("%d", &a[i]); } for(int i = 1; i <= n; ++i) { cnt[i] = 1; for(int j = 1; j <= n; ++j) { if(i == j) continue; cnt[i] = 1LL * cnt[i] * ((1LL * a[j] * a[j] % mod - 1LL * a[i]* a[i] % mod) % mod + mod) % mod; } cnt[i] = qpow(cnt[i], mod - 2); cnt[i] = 1LL * cnt[i] * qpow(a[i], mod - 2) % mod; cnt[i] = 1LL * cnt[i] * tmp % mod; } LL ans = 0; for(int i = 1; i <= n; ++i) { ans = ((ans + cnt[i]) % mod + mod) % mod; } printf("%lld\n", ans); } return 0; }

最新回复(0)