http://www.cnblogs.com/batteryhp/p/5023330.html
数据分析和建模的大量编程工作都是在数据准备上的(深表同意):加载、清理、转换以及重塑。pandas和Python标准库提供了一组高级的、灵活的、高效的核心函数和算法,他们能够轻松地将数据规整化为正确的形式。
1、合并数据集
pandas对象中的数据可以通过一些内置的方式进行合并
pandas.merge可以根据一个或者多个键值连接起来,就是SQL中的数据库连接工作。 pandas.concat可以沿着一条轴将多个对象堆叠在一起 实例方法combine_first可以讲重复数据编接在一起 ,用一个对象中的值填充另一个对象中的缺失值(注:译者说就是数据库中的外连接)。由于太常用,给出一些例子。
数据库风格的DataFrame合并
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #数据集的合并(merge)或者连接(join)运算是通过一个或者多个键将行链接起来。这是关系型数据库的核心。 df1 = DataFrame({'key':['b','b','a','c','a','a','b'],'data1':range(7)}) df2 = DataFrame({'key':['a','b','d'],'data2':range(3)}) print df1 print df2 #没有指定用哪些列进行合并时,默认用重复的列名进行合并,并且只保留合并列中的交集,其他舍去 #即merge默认的是“内连接” print pd.merge(df1,df2) #不过,最好显示指定一下: print pd.merge(df1,df2,on = 'key') #如果两个对象列明不同,也可以分别指定,当然,原则是这两列得有相同的值 df3 = DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1':range(7)}) df4 = DataFrame({'rkey':['a','b','d'],'data2':range(3)}) print pd.merge(df3,df4,left_on = 'lkey',right_on = 'rkey') #如果两列没有相同值,返回一个空DataFrame print pd.merge(df3,df4,left_on = 'lkey',right_on = 'data2') #merge选项有inner、left、right、outer几种,分别表示 内、左、右、外连接 print pd.merge(df1,df2,how = 'outer') #下面看多对多(即两个对象中每个键值对应不同的值) df1 = DataFrame({'key':list('bbacab'),'data1':range(6)}) df2 = DataFrame({'key':list('ababd'),'data2':range(5)}) #下面是多对多的合并,结果是笛卡尔积也就是针对一个键值,两个对象对应值的所有组合 print pd.merge(df1,df2,on = 'key',how = 'left') #对多个键进行合并,传入一个由列名组成的列表即可 left = DataFrame({'key1':['foo','foo','bar'],'key2':['one','two','one'],'lval':[1,2,3]}) right = DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]}) #多个键进行合并就是将多个键组合成元组,当作单个键值使用(实际上并不是这么回事) #注意要“不忘初心”,根据键值是对其他列的值进行合并 print pd.merge(left,right,on = ['key1','key2'],how = 'outer') #警告:列与列合并时,会把DataFrame的索引丢弃 #下面处理重复列名的问题,这里的重复列名是说,依据一列进行合并时两个对象剩下的列中有的列名字重复 #pandas会自动添加后缀 print pd.merge(left,right,on = 'key1') #后缀可以通过suffixes选项来指定 print pd.merge(left,right,on = 'key1',suffixes = ('_left','_right')) >>> data1 key0 0 b1 1 b2 2 a3 3 c4 4 a5 5 a6 6 b data2 key0 0 a1 1 b2 2 d data1 key data20 2 a 01 4 a 02 5 a 03 0 b 14 1 b 15 6 b 1 data1 key data20 2 a 01 4 a 02 5 a 03 0 b 14 1 b 15 6 b 1 data1 lkey data2 rkey0 2 a 0 a1 4 a 0 a2 5 a 0 a3 0 b 1 b4 1 b 1 b5 6 b 1 bEmpty DataFrameColumns: array([data1, lkey, data2, rkey], dtype=object)Index: array([], dtype=int64) data1 key data20 2 a 01 4 a 02 5 a 03 0 b 14 1 b 15 6 b 16 3 c NaN7 NaN d 2 data1 key data20 2 a 01 2 a 22 4 a 03 4 a 24 0 b 15 0 b 36 1 b 17 1 b 38 5 b 19 5 b 310 3 c NaN key1 key2 lval rval0 bar one 3 61 bar two NaN 72 foo one 1 43 foo one 1 54 foo two 2 NaN key1 key2_x lval key2_y rval0 bar one 3 one 61 bar one 3 two 72 foo one 1 one 43 foo one 1 one 54 foo two 2 one 45 foo two 2 one 5 key1 key2_left lval key2_right rval0 bar one 3 one 61 bar one 3 two 72 foo one 1 one 43 foo one 1 one 54 foo two 2 one 45 foo two 2 one 5[Finished in 0.7s]merge的选项有:
索引上的合并
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #索引上的合并 #DataFrame中连接键有时候在索引中。这时可以传入left_index = True或者right_index = True left1 = DataFrame({'key':list('abaabc'),'value':range(6)}) right1 = DataFrame({'group_val':[3.5,7],'index':['a','b']}) print right1 #注意上面的right1的索引值和ledt1中的值是同类型的,也就是说相当于对右边的进行转置并且索引跟随改变再进行合并 print pd.merge(left1,right1,left_on = 'key',right_index = True,how = 'inner') #对于层次化索引,事情就有点复杂了 lefth = DataFrame({'key1':['Ohio','Ohio','Ohio','Nevada','Nevada'], 'key2':[2000,2001,2002,2001,2002],'data':np.arange(5.)}) righth = DataFrame(np.arange(12.).reshape((6,2)),index = [['Nevada','Nevada','Ohio','Ohio','Ohio','Ohio',], [2001,2000,2000,2000,2001,2002]],columns = ['event1','event2']) print lefth print righth #这种情况下,必须指明用作合并键的多个列(注意对重复索引值的处理) #注意得到的结果的index是跟左边对象的index一致 print pd.merge(lefth,righth,left_on = ['key1','key2'],right_index = True,how = 'outer') #同时使用合并双方的索引也没问题 left2 = DataFrame([[1.,2.],[3.,4.],[5.,6.]],index = ['a','c','e'],columns = ['Ohio','Nevada']) right2 = DataFrame([[7.,8.],[9.,10.],[11.,12.],[13,14]],index = ['b','c','d','e'],columns = ['Missouri','Alabama']) print left2 print right2 #注意下面的方式,利用index进行合并 print pd.merge(left2,right2,how = 'outer',left_index = True,right_index = True) #DataFrame有一个join实例方法,它能更方便地实现按索引合并。还可以用作合并多个带有相同或者相似索引的 #DataFrame对象,而不管有没有重叠的列 print left2.join(right2,how = 'outer') #由于一些历史原因,DataFrame的join方法是在连接键上做左连接。它还支持参数DataFrame的索引跟 #调用者DataFrame的某个列之间的连接(这个方法有点像merge中的left_index这样的参数) print left1.join(right1,on = 'key') #这个函数现在已经跟书上的不一样了 #最后,对于简单的索引合并,还可以向join传入多个DataFrame another = DataFrame([[7.,8.],[9.,10.],[11.,12.],[16.,17.]],index = ['a','c','e','f'],columns = ['New York','Oregon']) print left2.join([right2,another],how = 'outer') >>> group_val index0 3.5 a1 7.0 bEmpty DataFrameColumns: array([key, value, group_val, index], dtype=object)Index: array([], dtype=int64) data key1 key20 0 Ohio 20001 1 Ohio 20012 2 Ohio 20023 3 Nevada 20014 4 Nevada 2002 event1 event2Nevada 2001 0 1 2000 2 3Ohio 2000 4 5 2000 6 7 2001 8 9 2002 10 11 data key1 key2 event1 event24 NaN Nevada 2000 2 33 3 Nevada 2001 0 14 4 Nevada 2002 NaN NaN0 0 Ohio 2000 4 50 0 Ohio 2000 6 71 1 Ohio 2001 8 92 2 Ohio 2002 10 11 Ohio Nevadaa 1 2c 3 4e 5 6 Missouri Alabamab 7 8c 9 10d 11 12e 13 14 Ohio Nevada Missouri Alabamaa 1 2 NaN NaNb NaN NaN 7 8c 3 4 9 10d NaN NaN 11 12e 5 6 13 14 Ohio Nevada Missouri Alabamaa 1 2 NaN NaNb NaN NaN 7 8c 3 4 9 10d NaN NaN 11 12e 5 6 13 14 key value group_val index0 a 0 NaN NaN1 b 1 NaN NaN2 a 2 NaN NaN3 a 3 NaN NaN4 b 4 NaN NaN5 c 5 NaN NaN Ohio Nevada Missouri Alabama New York Oregona 1 2 NaN NaN 7 8b NaN NaN 7 8 NaN NaNc 3 4 9 10 9 10d NaN NaN 11 12 NaN NaNe 5 6 13 14 11 12f NaN NaN NaN NaN 16 17[Finished in 0.8s]下面是轴向连接
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #另一种合并运算为连接(concatenation),绑定(binding)或者堆叠(stacking)。 #Numpy有一个用于合并原始Numpy数组的concatenation函数: arr = np.arange(12).reshape((3,4)) print arr print np.concatenate([arr,arr],axis = 1)对于pandas对象,需要考虑:
如果各对象其他轴上的索引不同,那些轴应该是并集还是交集? 结果对象中的分组需要各不相同吗? 用于连接的轴重要吗?下面介绍concat函数:
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame ''' #另一种合并运算为连接(concatenation),绑定(binding)或者堆叠(stacking)。 #Numpy有一个用于合并原始Numpy数组的concatenation函数: arr = np.arange(12).reshape((3,4)) print arr print np.concatenate([arr,arr],axis = 1) ''' s1 = Series([0,1],index = ['a','b']) s2 = Series([2,3,4],index = ['c','d','e']) s3 = Series([5,6],index = ['f','g']) print pd.concat([s1,s2,s3]) #注意下面的方式,产生的是一个DataFrame,index是所有index合并起来,列是每个Series占一列,其他位置N啊N print pd.concat([s1,s2,s3],axis = 1) #如果Series有重复值的情况下 s4 = pd.concat([s1 * 5,s3]) print s4 #下面的inner是取交集 print pd.concat([s1,s4],axis = 1,join = 'inner') #通过join_axes指定要在“其他轴”上使用的索引 print pd.concat([s1,s4],axis = 1,join_axes = [['a','c','b','e']]) #现在有个问题,参与连接的各个部分在最后的结果中不能区分,可以设置层次化索引解决此问题 result = pd.concat([s1,s2,s3],keys = ['one','two','three']) print result print result.unstack() #如果沿着axis=1进行合并,则当然的key成为DataFrame的列头(列名): result1 = pd.concat([s1,s2,s3],axis = 1,keys = ['one','two','three']) print result1 print result1.columns #下面看DataFrame的合并方式,行列数量不同也能合并,比R语言好 df1 = DataFrame(np.arange(6).reshape(3,2),index = ['a','b','c'],columns = ['one','two']) df2 = DataFrame(5 + np.arange(4).reshape(2,2),index = ['a','c'],columns = ['three','four']) print pd.concat([df1,df2])#默认将行合并 print pd.concat([df1,df2],axis = 1,keys = ['level1','level2']) #下面的这种合并方式更加科学,字典的形式 print pd.concat({'level1':df1,'level2':df2},axis = 0) print pd.concat([df1,df2],axis = 1,keys = ['level1','level2'],names = ['upper','lower']) #最后需要考虑的问题是,跟当前分析工作无关的DataFrame行索引,也就是说,原来的行索引没有意义了 df1 = DataFrame(np.random.randn(3,4),columns = [list('abcd')]) df2 = DataFrame(np.random.randn(2,3),columns = ['b','d','a']) #只要加上ignore_index = True 即可 print pd.concat([df1,df2],ignore_index = True) >>>a 0b 1c 2d 3e 4f 5g 6 0 1 2a 0 NaN NaNb 1 NaN NaNc NaN 2 NaNd NaN 3 NaNe NaN 4 NaNf NaN NaN 5g NaN NaN 6a 0b 5f 5g 6 0 1a 0 0b 1 5 0 1a 0 0c NaN NaNb 1 5e NaN NaNone a 0 b 1two c 2 d 3 e 4three f 5 g 6 a b c d e f gone 0 1 NaN NaN NaN NaN NaNtwo NaN NaN 2 3 4 NaN NaNthree NaN NaN NaN NaN NaN 5 6 one two threea 0 NaN NaNb 1 NaN NaNc NaN 2 NaNd NaN 3 NaNe NaN 4 NaNf NaN NaN 5g NaN NaN 6array([one, two, three], dtype=object) four one three twoa NaN 0 NaN 1b NaN 2 NaN 3c NaN 4 NaN 5a 6 NaN 5 NaNc 8 NaN 7 NaN level1 level2 one two three foura 0 1 5 6b 2 3 NaN NaNc 4 5 7 8 four one three twolevel1 a NaN 0 NaN 1 b NaN 2 NaN 3 c NaN 4 NaN 5level2 a 6 NaN 5 NaN c 8 NaN 7 NaNupper level1 level2 lower one two three foura 0 1 5 6b 2 3 NaN NaNc 4 5 7 8 a b c d0 2.277611 0.597990 2.128480 -0.4677471 2.450508 -0.682617 1.129313 1.1744472 -0.106422 0.590667 1.015706 0.7126733 -1.323742 0.060791 NaN 1.0951134 0.586082 -0.849976 NaN -0.320739[Finished in 1.9s]
concat函数的参数如下:
合并重叠数据
还有一种数据是不能简单通过merge、concatenation解决的。比如,有可能部分或者全部索引重叠的两个数据集。
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame a = Series([np.nan,2.5,np.nan,3.5,4.5,np.nan], index = ['f','e','d','c','b','a']) b = Series(np.arange(len(a),dtype = np.float64), index = ['f','e','d','c','b','a']) b[-1] = np.nan print a,'\n' print b,'\n' #print a + b #注意这里的自动对齐 #c用来按照索引取a、b的值: c = np.where(pd.isnull(a),b,a) print c,'\n' #numpy中也有这样一个方法combine_first print b[:-2].combine_first(a[2:]) #注意两者都不为空时,保留b的值 #对于DataFrame而言,combine_first也是做同样的事,可以看作用参数对象中的数据 #为调用者对象的确实数据“打补丁” df1 = DataFrame({'a':[1.,np.nan,5.,np.nan], 'b':[np.nan,2.,np.nan,6.], 'c':range(2,18,4)}) df2 = DataFrame({'a':[5.,4.,np.nan,3.,7.], 'b':[np.nan,3.,4.,6.,8.]}) #要特别注意下面的应用,df1比df2 少一行,运行以后df1就比原来多了一行,这有时候对数据处理是个隐藏bug啊! print df1.combine_first(df2) >>> f NaNe 2.5d NaNc 3.5b 4.5a NaNf 0e 1d 2c 3b 4a NaN
f 0.0e 2.5d 2.0c 3.5b 4.5a NaN
a NaNb 4.5c 3.0d 2.0e 1.0f 0.0 a b c0 1 NaN 21 4 2 62 5 4 103 3 6 144 7 8 NaN[Finished in 0.9s]
2、重塑和轴向旋转
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #reshape(重塑)、pivot(轴向旋转)可以对表格型数据进行基础运算 #重塑层次化索引 #stack:将数据的列“旋转”为行 #unstack:将数据的行“旋转”为列 data = DataFrame(np.arange(6).reshape((2,3)),index = pd.Index(['Ohio','Colorado'],name = 'state'), columns = pd.Index(['one','two','three'],name = 'number')) print data result = data.stack() print result #这里就是将列名作为了层次化索引(内层索引),得到了一个Series print result.unstack() #将层次化索引转换为二维表,得到DataFrame #默认情况下,unstack处理的是内层的索引,若想别的层次,传入编号或者名称即可,注意最外一层编号为0 result1 = result.unstack(0) print result1 print result1.stack(0),'\n' #默认,列为内层 print result1.unstack(1) ,'\n' #列为外层 #下面看有缺失值的情况,unstack()会标示出缺失值 s1 = Series([0,1,2,3],index = [list('abcd')]) s2 = Series([4,5,6],index = ['c','d','e']) data2 = pd.concat([s1,s2],keys = ['one','two']) print data2 print data2.unstack(),'\n' #stack会滤除缺失数据 print data2.unstack().stack(),'\n' print data2.unstack().stack(dropna = False) ,'\n' #保留缺失值 #对DataFrame进行unstack时,作为旋转轴的级别成为结果中最低的,弄到最内层 df = DataFrame({'left':result,'right':result + 5},columns = pd.Index(['left','right'],name = 'side')) print 'df is \n',df print 'df.unstack is \n',df.unstack('state') print 'df.unstack.stack \n',df.unstack('state').stack('side')将“长格式”转换为“宽格式”
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #时间序列中的数据通常是以所谓“长格式”(long)或“堆叠格式”(stacked)存储在数据库和csv中 #由于没有找到数据,自己动手写一点 ldata = DataFrame({'date':['03-31','03-31','03-31','06-30','06-30','06-30'], 'item':['real','infl','unemp','real','infl','unemp'],'value':['2710.','000.','5.8','2778.','2.34','5.1']}) print 'ldata is \n',ldata #下面就是将data、item作为行、列名,value填充进二维表 pivoted = ldata.pivot('date','item','value') print 'pivoted is \n',pivoted ldata['value2'] = np.random.randn(len(ldata)) print 'ldata is \n',ldata #看一下下面的结果,得到的列就有了层次化列表 pivoted = ldata.pivot('date','item') print pivoted print 'pivoted is \n',pivoted['value'],'\n' #换一种试试,下面的就将value2填充,value就丢弃了 pivoted1 = ldata.pivot('date','item','value2') print pivoted1 #注意,pivot其实只是一个“快捷方式而已”,用set_index创建层次化索引,再用unstack重塑 unstacked = ldata.set_index(['date','item']).unstack('item') #unstack标明展开的轴 print unstacked转载于:https://www.cnblogs.com/virusolf/p/6226296.html
相关资源:各显卡算力对照表!