http://www.cnblogs.com/zxjyuan/archive/2010/01/06/1640092.html
冒泡法:
Using directivesnamespace BubbleSorter{ public class BubbleSorter { public void Sort(int[] list) { int i, j, temp; bool done = false; j = 1; while ((j < list.Length) && (!done)) { done = true; for (i = 0; i < list.Length - j; i++) { if (list[i] > list[i + 1]) { done = false; temp = list[i]; list[i] = list[i + 1]; list[i + 1] = temp; } } j++; } } } public class MainClass { public static void Main() { int[] iArrary = new int[] { 1, 5, 13, 6, 10, 55, 99, 2, 87, 12, 34, 75, 33, 47 }; BubbleSorter sh = new BubbleSorter(); sh.Sort(iArrary); for (int m = 0; m < iArrary.Length; m++) Console.Write("{0}", iArrary[m]); Console.WriteLine(); } }}选择排序法
Using directivesnamespace SelectionSorter{ public class SelectionSorter { private int min; public void Sort(int[] list) { for (int i = 0; i < list.Length - 1; i++) { min = i; for (int j = i + 1; j < list.Length; j++) { if (list[j] < list[min]) min = j; } int t = list[min]; list[min] = list[i]; list[i] = t; } } } public class MainClass { public static void Main() { int[] iArrary = new int[] { 1, 5, 3, 6, 10, 55, 9, 2, 87, 12, 34, 75, 33, 47 }; SelectionSorter ss = new SelectionSorter(); ss.Sort(iArrary); for (int m = 0; m < iArrary.Length; m++) Console.Write("{0}", iArrary[m]); Console.WriteLine(); } }}插入排序法
Using directivesnamespace InsertionSorter{ public class InsetionSorter { public void Sort(int[] list) { for (int i = 1; i < list.Length; i++) { int t = list[i]; int j = i; while ((j > 0) && (list[j - 1] > t)) { list[j] = list[j - 1]; --j; } list[j] = t; } } } public class MainClass { public static void Main() { int[] iArrary = new int[] { 1, 13, 3, 6, 10, 55, 98, 2, 87, 12, 34, 75, 33, 47 }; InsertionSorter ii = new InsertionSorter(); ii.Sort(iArrary); for (int m = 0; m < iArrary.Length; m++) Console.Write("{0}", iArrary[m]); Console.WriteLine(); } }}希尔排序法
Using directivesnamespace ShellSorter{ public class ShellSorter { public void Sort(int[] list) { int inc; for (inc = 1; inc <= list.Length / 9; inc = 3 * inc + 1) ; for (; inc > 0; inc /= 3) { for (int i = inc + 1; i <= list.Length; i += inc) { int t = list[i - 1]; int j = i; while ((j > inc) && (list[j - inc - 1] > t)) { list[j - 1] = list[j - inc - 1]; j -= inc; } list[j - 1] = t; } } } } public class MainClass { public static void Main() { int[] iArrary = new int[] { 1, 5, 13, 6, 10, 55, 99, 2, 87, 12, 34, 75, 33, 47 }; ShellSorter sh = new ShellSorter(); sh.Sort(iArrary); for (int m = 0; m < iArrary.Length; m++) Console.Write("{0}", iArrary[m]); Console.WriteLine(); } }}以前空闲的时候用C#实现的路径规划算法,今日贴它出来,看大家有没有更好的实现方案。关于路径规划(最短路径)算法的背景知识,大家可以参考《C++算法--图算法》一书。 该图算法描述的是这样的场景:图由节点和带有方向的边构成,每条边都有相应的权值,路径规划(最短路径)算法就是要找出从节点A到节点B的累积权值最小的路径。 首先,我们可以将“有向边”抽象为Edge类:
public class Edge { public string StartNodeID ; public string EndNodeID ; public double Weight ; //权值,代价 }节点则抽象成Node类,一个节点上挂着以此节点作为起点的“出边”表。
public class Node { private string iD ; private ArrayList edgeList ;//Edge的集合--出边表 public Node(string id ) { this.iD = id ; this.edgeList = new ArrayList() ; } #region property public string ID { get { return this.iD ; } } public ArrayList EdgeList { get { return this.edgeList ; } } #endregion }在计算的过程中,我们需要记录到达每一个节点权值最小的路径,这个抽象可以用PassedPath类来表示:
/// <summary> /// PassedPath 用于缓存计算过程中的到达某个节点的权值最小的路径 /// </summary> public class PassedPath { private string curNodeID ; private bool beProcessed ; //是否已被处理 private double weight ; //累积的权值 private ArrayList passedIDList ; //路径 public PassedPath(string ID) { this.curNodeID = ID ; this.weight = double.MaxValue ; this.passedIDList = new ArrayList() ; this.beProcessed = false ; } #region property public bool BeProcessed { get { return this.beProcessed ; } set { this.beProcessed = value ; } } public string CurNodeID { get { return this.curNodeID ; } } public double Weight { get { return this.weight ; } set { this.weight = value ; } } public ArrayList PassedIDList { get { return this.passedIDList ; } } #endregion }另外,还需要一个表PlanCourse来记录规划的中间结果,即它管理了每一个节点的PassedPath。
/// <summary> /// PlanCourse 缓存从源节点到其它任一节点的最小权值路径=》路径表 /// </summary> public class PlanCourse { private Hashtable htPassedPath ; #region ctor public PlanCourse(ArrayList nodeList ,string originID) { this.htPassedPath = new Hashtable() ; Node originNode = null ; foreach(Node node in nodeList) { if(node.ID == originID) { originNode = node ; } else { PassedPath pPath = new PassedPath(node.ID) ; this.htPassedPath.Add(node.ID ,pPath) ; } } if(originNode == null) { throw new Exception("The origin node is not exist !") ; } this.InitializeWeight(originNode) ; } private void InitializeWeight(Node originNode) { if((originNode.EdgeList == null) ||(originNode.EdgeList.Count == 0)) { return ; } foreach(Edge edge in originNode.EdgeList) { PassedPath pPath = this[edge.EndNodeID] ; if(pPath == null) { continue ; } pPath.PassedIDList.Add(originNode.ID) ; pPath.Weight = edge.Weight ; } } #endregion public PassedPath this[string nodeID] { get { return (PassedPath)this.htPassedPath[nodeID] ; } } }在所有的基础构建好后,路径规划算法就很容易实施了,该算法主要步骤如下:(1)用一张表(PlanCourse)记录源点到任何其它一节点的最小权值,初始化这张表时,如果源点能直通某节点,则权值设为对应的边的权,否则设为double.MaxValue。(2)选取没有被处理并且当前累积权值最小的节点TargetNode,用其边的可达性来更新到达其它节点的路径和权值(如果其它节点 经此节点后权值变小则更新,否则不更新),然后标记TargetNode为已处理。(3)重复(2),直至所有的可达节点都被处理一遍。(4)从PlanCourse表中获取目的点的PassedPath,即为结果。 下面就来看上述步骤的实现,该实现被封装在RoutePlanner类中:
/// <summary> /// RoutePlanner 提供图算法中常用的路径规划功能。 /// 2005.09.06 /// </summary> public class RoutePlanner { public RoutePlanner() { } #region Paln //获取权值最小的路径 public RoutePlanResult Paln(ArrayList nodeList ,string originID ,string destID) { PlanCourse planCourse = new PlanCourse(nodeList ,originID) ; Node curNode = this.GetMinWeightRudeNode(planCourse ,nodeList ,originID) ; #region 计算过程 while(curNode != null) { PassedPath curPath = planCourse[curNode.ID] ; foreach(Edge edge in curNode.EdgeList) { PassedPath targetPath = planCourse[edge.EndNodeID] ; double tempWeight = curPath.Weight + edge.Weight ; if(tempWeight < targetPath.Weight) { targetPath.Weight = tempWeight ; targetPath.PassedIDList.Clear() ; for(int i=0 ;i<curPath.PassedIDList.Count ;i++) { targetPath.PassedIDList.Add(curPath.PassedIDList[i].ToString()) ; } targetPath.PassedIDList.Add(curNode.ID) ; } } //标志为已处理 planCourse[curNode.ID].BeProcessed = true ; //获取下一个未处理节点 curNode = this.GetMinWeightRudeNode(planCourse ,nodeList ,originID) ; } #endregion //表示规划结束 return this.GetResult(planCourse ,destID) ; } #endregion #region private method #region GetResult //从PlanCourse表中取出目标节点的PassedPath,这个PassedPath即是规划结果 private RoutePlanResult GetResult(PlanCourse planCourse ,string destID) { PassedPath pPath = planCourse[destID] ; if(pPath.Weight == int.MaxValue) { RoutePlanResult result1 = new RoutePlanResult(null ,int.MaxValue) ; return result1 ; } string[] passedNodeIDs = new string[pPath.PassedIDList.Count] ; for(int i=0 ;i<passedNodeIDs.Length ;i++) { passedNodeIDs[i] = pPath.PassedIDList[i].ToString() ; } RoutePlanResult result = new RoutePlanResult(passedNodeIDs ,pPath.Weight) ; return result ; } #endregion #region GetMinWeightRudeNode //从PlanCourse取出一个当前累积权值最小,并且没有被处理过的节点 private Node GetMinWeightRudeNode(PlanCourse planCourse ,ArrayList nodeList ,string originID) { double weight = double.MaxValue ; Node destNode = null ; foreach(Node node in nodeList) { if(node.ID == originID) { continue ; } PassedPath pPath = planCourse[node.ID] ; if(pPath.BeProcessed) { continue ; } if(pPath.Weight < weight) { weight = pPath.Weight ; destNode = node ; } } return destNode ; } #endregion #endregion }转载于:https://www.cnblogs.com/virusolf/p/4906760.html
