用java做操作系统内核:软盘读写

it2022-05-05  190

在前两节,我们将一段代码通过软盘加载到了系统内存中,并指示cpu执行加入到内存的代码,事实上,操作系统内核加载也是这么做的。只不过我们加载的代码,最大只能512 byte, 一个操作系统内核,少说也要几百兆,由此,系统内核不可能直接从软盘读入系统内存。

通常的做法是,被加载进内存的512 Byte程序,实际上是一个内核加载器,它运行起来后,通过读取磁盘,将存储在磁盘上的内核代码加载到指定的内存空间,然后再把cpu的控制权提交给加载进来的系统内核。

这就需要我们理解软盘的物理结构,以及软盘的数据读取方法。 

软盘的物理结构如上图,一个盘面被划分成若干个圆圈,例如图中的灰色圆圈,我们称之为磁道,也可以称作柱面,一个磁道或柱面,又被分割成若干部分,每一部分,我们称之为一个扇区,一个扇区的大小正好是512k,从而,当我们把数据存储到软盘上时,数据会分解成若干个512Byte大小的块,然后写入到扇区里。

要读取数据时,磁头会挪动到扇区所在的磁道或柱面,然后盘面转动,当要读取的扇区转到磁头正下方时,磁头通电,通过电磁效应将扇区的数据读取到内存中。

从上图的左边图形可以了解,一个磁盘有两个盘面,每个盘面的组成跟右边图形一样,同时每个盘面对应一个磁头,所以当想从磁盘上读取数据时,需要确定数据在哪一个盘面,从而确定要用哪一个磁头来读取数据,然后确定哪一个磁道,最后再确定要读取的数据都存储在哪一个扇区。

对于我们要开发的系统,我们要模拟的是3.5寸软盘,这种软盘的特点是,它有两个盘面,因此就对应两个磁头,每个盘面有80个磁道,也就是柱面,编号分别为0-79. 每个柱面都有18个扇区,编号分别为1-18. 所以一个盘面可以存储的数据量大小为: 512 * 18 * 80 一个软盘有两个盘面,因此一个软盘可以存储的数据为: 2 * 512 * 18 * 80 = 1474560 Byte = 1440 KB = 1.5M

接下来,我们用java来模拟一个3.5寸软盘,以及它的读写逻辑。

Floppy.java 用于实现虚拟软盘

import java.io.DataOutputStream; import java.io.FileOutputStream; import java.util.ArrayList; import java.util.HashMap; public class Floppy { enum MAGNETIC_HEAD { MAGNETIC_HEAD_0, MAGETIC_HEAD_1 }; public int SECTOR_SIZE = 512; private int CYLINDER_COUNT = 80; //80个柱面 private int SECTORS_COUNT = 18; private MAGNETIC_HEAD magneticHead = MAGNETIC_HEAD.MAGNETIC_HEAD_0; private int current_cylinder = 0; private int current_sector = 0; private HashMap<Integer,ArrayList<ArrayList<byte[]>> > floppy = new HashMap<Integer,ArrayList<ArrayList<byte[]>> >(); //一个磁盘两个面 public Floppy() { initFloppy(); } private void initFloppy() { //一个磁盘有两个盘面 floppy.put(MAGNETIC_HEAD.MAGNETIC_HEAD_0.ordinal(), initFloppyDisk()); floppy.put(MAGNETIC_HEAD.MAGETIC_HEAD_1.ordinal(), initFloppyDisk()); } private ArrayList<ArrayList<byte[]>> initFloppyDisk() { ArrayList<ArrayList<byte[]>> floppyDisk = new ArrayList<ArrayList<byte[]>>(); //磁盘的一个面 //一个磁盘面有80个柱面 for(int i = 0; i < CYLINDER_COUNT; i++) { floppyDisk.add(initCylinder()); } return floppyDisk; } private ArrayList<byte[]> initCylinder() { //构造一个柱面,一个柱面有18个扇区 ArrayList<byte[]> cylinder = new ArrayList<byte[]> (); for (int i = 0; i < SECTORS_COUNT; i++) { byte[] sector = new byte[SECTOR_SIZE]; cylinder.add(sector); } return cylinder; } public void setMagneticHead(MAGNETIC_HEAD head) { magneticHead = head; } public void setCylinder(int cylinder) { if (cylinder < 0) { this.current_cylinder = 0; } else if (cylinder >= 80) { this.current_cylinder = 79; } else { this.current_cylinder = cylinder; } } public void setSector(int sector) { //sector 编号从1到18 if (sector < 0) { this.current_sector = 0; } else if (sector > 18) { this.current_sector = 18 - 1; } else { this.current_sector = sector - 1; } } public byte[] readFloppy(MAGNETIC_HEAD head, int cylinder_num, int sector_num) { setMagneticHead(head); setCylinder(cylinder_num); setSector(sector_num); ArrayList<ArrayList<byte[]>> disk = floppy.get(this.magneticHead.ordinal()); ArrayList<byte[]> cylinder = disk.get(this.current_cylinder); byte[] sector = cylinder.get(this.current_sector); return sector; } public void writeFloppy(MAGNETIC_HEAD head, int cylinder_num, int sector_num, byte[] buf) { setMagneticHead(head); setCylinder(cylinder_num); setSector(sector_num); ArrayList<ArrayList<byte[]>> disk = floppy.get(this.magneticHead.ordinal()); ArrayList<byte[]> cylinder = disk.get(this.current_cylinder); cylinder.set(this.current_sector, buf); } public void makeFloppy(String fileName) { try { DataOutputStream out = new DataOutputStream(new FileOutputStream(fileName)); for (int head = 0; head <= MAGNETIC_HEAD.MAGETIC_HEAD_1.ordinal(); head++) { for (int cylinder = 0; cylinder < CYLINDER_COUNT; cylinder++) { for (int sector = 1; sector <= SECTORS_COUNT; sector++) { byte[] buf = readFloppy(MAGNETIC_HEAD.values()[head], cylinder, sector); out.write(buf); } } } } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } } 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126

读写虚拟软盘需要调用接口readFloppy 或 writeFloppy, 使用这些接口时必须指定磁头,柱面和扇区号,在主程序中,我将上节用汇编编译的操作系统内核写入到虚拟软盘中,然后将虚拟软盘写成磁盘文件, 具体代码如下:

import java.io.DataOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.util.ArrayList; public class OperatingSystem { private Floppy floppyDisk = new Floppy(); private void writeFileToFloppy(String fileName) { File file = new File(fileName); InputStream in = null; try { in = new FileInputStream(file); byte[] buf = new byte[512]; buf[510] = 0x55; buf[511] = (byte) 0xaa; if (in.read(buf) != -1) { //将内核读入到磁盘第0面,第0柱面,第1个扇区 floppyDisk.writeFloppy(Floppy.MAGNETIC_HEAD.MAGNETIC_HEAD_0, 0, 1, buf); } } catch(IOException e) { e.printStackTrace(); return; } } public OperatingSystem(String s) { writeFileToFloppy(s); } public void makeFllopy() { floppyDisk.makeFloppy("system.img"); } public static void main(String[] args) { OperatingSystem op = new OperatingSystem("boot.bat"); op.makeFllopy(); } } 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849

上面的代码运行后,在项目的根目录会生成一个system.img虚拟软盘文件,将该软盘加入虚拟机,我们制作的操作系统内核就能被虚拟机执行了: 

上面代码可以通过如下git 命令下载: git clone https://github.com/wycl16514/OS-kernel-development.git

用汇编语言实现软盘读写

使用汇编读取软盘的原理与上面描述的相同,我们要调用相应的BIOS中断,同时将要读取的磁头号,柱面,扇区号传给中断代码,读取软盘的汇编代码如下: mov CH, 1 ;CH 用来存储柱面号 mov DH, 0 ;DH 用来存储磁头号 mov CL, 2 ;CL 用来存储扇区号

mov BX, msg ; ES:BX 数据存储缓冲区

mov AH, 0x02 ; AH = 02 表示要做的是读盘操作 mov AL, 1 ; AL 表示要练习读取几个扇区 mov DL, 0 ;驱动器编号,一般我们只有一个软盘驱动器,所以写死 ;为0 INT 0x13 ;调用BIOS中断实现磁盘读取功能 JC error ; 如果读盘出现错误,跳转到error处执行相应代码

在计算机硬件中,有一个隐含的寄存器叫FLACS, 当BIOS调用出现错误时,FLACS寄存器的 CF 位会置1,同时把错误代码存入AH,如果没有错,那么FLACS寄存器的CF位会设置为0,所以 JC error 的意思是: if (FLACS.CF == 1) { error(); }

在前面,我们的内核加载到内存后,会打印出一条语句,而语句与内核代码都存储在同一个扇区中,这一次,我们将要打印的语句存储在第一柱面的第二扇区,内核加载如内存后,通过BIOS调用将要打印的语句从指定位置读出,然后再显示到屏幕上,代码如下:

org 0x7c00; jmp entry db 0x90 DB "OSKERNEL" DW 512 DB 1 DW 1 DB 2 DW 224 DW 2880 DB 0xf0 DW 9 DW 18 DW 2 DD 0 DD 2880 DB 0,0,0x29 DD 0xFFFFFFFF DB "MYFIRSTOS " DB "FAT12 " RESB 18 entry: mov ax, 0 mov ss, ax mov ds, ax mov es, ax mov si, msg readFloppy: mov CH, 1 ;CH 用来存储柱面号 mov DH, 0 ;DH 用来存储磁头号 mov CL, 2 ;CL 用来存储扇区号 mov BX, msg ; ES:BX 数据存储缓冲区 mov AH, 0x02 ; AH = 02 表示要做的是读盘操作 mov AL, 1 ; AL 表示要练习读取几个扇区 mov DL, 0 ;驱动器编号,一般我们只有一个软盘驱动器,所以写死 ;为0 INT 0x13 ;调用BIOS中断实现磁盘读取功能 jc error putloop: mov al, [si] add si, 1 cmp al, 0 je fin mov ah, 0x0e mov bx, 15 int 0x10 jmp putloop fin: HLT jmp fin error: mov si, errmsg ;出现错误打印error jmp putloop msg: RESB 64 errmsg: DB "error" 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869

在上面的汇编代码中,readFloppy将要打印的字符串从磁盘中读出来,放入到缓冲区msg中,大家注意,msg下面是语句 RESB 64, 这一句的意思是分配64个字节的缓冲区。

将上面的汇编代码存成文件boot.asm ,然后使用命令: nasm boot.asm -o boot.bat

把上面代码编译成二进制文件boot.bat.接下来,我们在生成虚拟软盘的java代码中把把要输出的语句写入到虚拟软盘的1柱面,2扇区,代码如下:

public void makeFllopy() { String s = "This is a text from cylinder 1 and sector 2"; floppyDisk.writeFloppy(Floppy.MAGNETIC_HEAD.MAGNETIC_HEAD_0, 1, 2, s.getBytes()); floppyDisk.makeFloppy("system.img"); } 123456

上面的代码中,我们把s字符串写入虚拟软盘的0磁头,1柱面,2扇区。把上面编译好的boot.bat也放入到java工程目录下,然后运行java代码,运行后在目录下会生成一个system.img虚拟映像,然后将该文件作为启动软盘加入虚拟机:

然后启动虚拟机,可以看到,我们的系统内核将字符串从软盘的1柱面,2扇区中读出来,显示到屏幕上:

代码可以根据以下的git 命令获取:

git clone https://github.com/wycl16514/OS-kernel-development.git

  上一篇java开发编译器:构建LR语法的有限状态自动机下一篇java开发编译器:LR 状态机的缺陷与改进

转载于:https://www.cnblogs.com/csguo/p/7614982.html


最新回复(0)