网络传输

it2022-05-05  128

OSI七层模型

TCP和UDP的区别

TCP面向连接,UDP无连接

可靠性:TCP三次握手,更可靠

有序性:TCP有排序

速度:UDP快,在线视屏、游戏

量级:TCP 请求头20个字节,UDP8个字节

HTTP工作流程

第一步:建立TCP/IP连接,客户端与服务器通过Socket三次握手进行连接

第二步:客户端向服务端发起HTTP请求(例如:POST/login.html http/1.1)

第三步:客户端发送请求头信息,请求内容,最后会发送一空白行,标示客户端请求完毕

第四步:服务器做出应答,表示对于客户端请求的应答,例如:HTTP/1.1 200 OK

第五步:服务器向客户端发送应答头信息

第六步:服务器向客户端发送请求头信息后,也会发送一空白行,标示应答头信息发送完毕,接着就以Content-type要求的数据格式发送数据给客户端

第七步:服务端关闭TCP连接,如果服务器或者客户端增Connection:keep-alive就表示客户端与服务器端继续保存连接,在下次请求时可以继续使用这次的连接

HTTPS和HTTP的区别

HTTPS:是以安全为目标的HTTP通道,简单讲是HTTP的安全版,即HTTP下加入SSL层,HTTPS的安全基础是SSL,因此加密的详细内容就需要SSL

1、https协议需要到ca申请证书,一般免费证书较少,因而需要一定费用。

2、http是超文本传输协议,信息是明文传输,https则是具有安全性的ssl加密传输协议。

3、http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。

4、http的连接很简单,是无状态的;HTTPS协议是由SSL+HTTP协议构建的可进行加密传输、身份认证的网络协议,比http协议安全。

OSI七层协议

物理层:传输比特流->电流->比特流。例如:网线、光纤

数据链路层:格式化数据,错误检测和纠正。例如:交换机

网络层:网络地址翻译成物理地址。例如:路由器

传输层:数据包分隔(序列号)。TCP协议或者UDP协议

会话层:不同机器上用户之间建立管理通讯。例如LINUX和WIN的传输

表示层:语法的定义和关联、加密、解密、压缩。

应用层:固定长度和组成消息头、消息体。HTTP协议

TCP连接三次握手(原文链接:https://blog.csdn.net/qq_38950316/article/details/81087809)

第一次握手:建立连接时,主机A发送位码为SYN=1,随机产生seq number=x 的数据包到服务器,主机B由SYN=1知道,A要求建立联机,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),主机B收到请求后要确认联机信息,向A发送ack number=x+1(主机A的seq+1),SYN=1,ACK=1,随机产生seq=y 的包,此时服务器进入SYN_RECV状态;

第三次握手:主机A收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,主机A会再发送ack number=(主机B的seq+1),ACK=1,主机B收到后确认seq值与ACK=1则连接建立成功。,此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

TCP关闭四次握手(原文链接:https://blog.csdn.net/qq_38950316/article/details/81087809)

查看CLOSE_WAIT状态 netstat -n | awk '/^tcp/{++S[$NF]}END{for(a in s) print a,s[a]}'  导致too many open files

1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

常见面试题(原文链接:https://blog.csdn.net/qq_38950316/article/details/81087809)

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可能最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

在谢希仁著《计算机网络》第四版中讲“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。

    3.1、网络问题。两次握手:client没有收到ack确认,会一直处于syn_sent状态,server端发送的信息丢失。

    3.2、client掉线:两次握手:server不知道client掉线,会一直重发分组信息;三次握手:server保鲜机制不断重发,linux默认5次,共61秒

    3.3、攻击syn flood保护错误: 三次握手:syn队列满了,tcp 根据原地址端口、目标地址端口、时间戳tcp_syscookies回发syn cookie,客户端回发直接连接,攻击者没有

   3.4、保活机制:keep-alive 设置了http keep-alive,当网络两端建立了TCP连接之后,闲置idle(双方没有任何数据流发送往来)了tcp_keepalive_time后,服务器内核就会尝试向客户端发送侦测包,来判断TCP连接状况(有可能客户端崩溃、强制关闭了应用、主机不可达等等)。如果没有收到对方的回答(ack包),则会在 tcp_keepalive_intvl后再次尝试发送侦测包,直到收到对对方的ack,如果一直没有收到对方的ack,一共会尝试 tcp_keepalive_probes次,每次的间隔时间在这里分别是15s, 30s, 45s, 60s, 75s。如果尝试tcp_keepalive_probes,依然没有收到对方的ack包,则会丢弃该TCP连接。TCP连接默认闲置时间是2小时

       现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

keep-alive:(https://blog.csdn.net/yscoder/article/details/77663435)


最新回复(0)