rnn

it2022-05-05  112

import numpy as np def random_init(num_rows, num_cols): return np.random.rand(num_rows, num_cols)*0.01 def zero_init(num_rows, num_cols): return np.zeros((num_rows, num_cols)) class DataReader: def __init__(self, path, seq_length): self.fp = open(path, "r") self.data = self.fp.read() chars = list(set(self.data)) self.char_to_ix = {ch:i for (i,ch) in enumerate(chars)} self.ix_to_char = {i:ch for (i,ch) in enumerate(chars)} self.data_size = len(self.data) self.vocab_size = len(chars) self.pointer = 0 self.seq_length = seq_length def next_batch(self): input_start = self.pointer input_end = self.pointer + self.seq_length inputs = [self.char_to_ix[ch] for ch in self.data[input_start:input_end]] targets = [self.char_to_ix[ch] for ch in self.data[input_start+1:input_end+1]] self.pointer += self.seq_length if self.pointer + self.seq_length + 1 >= self.data_size: # reset pointer self.pointer = 0 return inputs, targets def just_started(self): return self.pointer == 0 def close(self): self.fp.close() class SimpleRNN: def __init__(self, hidden_size, vocab_size, seq_length, learning_rate): # hyper parameters self.hidden_size = hidden_size self.vocab_size = vocab_size self.seq_length = seq_length self.learning_rate = learning_rate # model parameters self.Wxh = random_init(hidden_size, vocab_size) # input to hidden self.Whh = random_init(hidden_size, hidden_size) # hidden to hidden self.Why = random_init(vocab_size, hidden_size) # hidden to output self.bh = zero_init(hidden_size, 1) # bias for hidden layer self.by = zero_init(vocab_size, 1) # bias for output # memory vars for adagrad self.mWxh = np.zeros_like(self.Wxh) self.mWhh = np.zeros_like(self.Whh) self.mWhy = np.zeros_like(self.Why) self.mbh = np.zeros_like(self.bh) self.mby = np.zeros_like(self.by) def forward(self, inputs, hprev): xs, hs, ys, ps = {}, {}, {}, {} hs[-1] = np.copy(hprev) for t in range(len(inputs)): xs[t] = zero_init(self.vocab_size,1) xs[t][inputs[t]] = 1 # one hot encoding , 1-of-k hs[t] = np.tanh(np.dot(self.Wxh,xs[t]) + np.dot(self.Whh,hs[t-1]) + self.bh) # hidden state ys[t] = np.dot(self.Why,hs[t]) + self.by # unnormalised log probs for next char ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probs for next char return xs, hs, ps def backward(self, xs, hs, ps, targets): # backward pass: compute gradients going backwards dWxh, dWhh, dWhy = np.zeros_like(self.Wxh), np.zeros_like(self.Whh), np.zeros_like(self.Why) dbh, dby = np.zeros_like(self.bh), np.zeros_like(self.by) dhnext = np.zeros_like(hs[0]) for t in reversed(range(self.seq_length)): dy = np.copy(ps[t]) dy[targets[t]] -= 1 # backprop into y dWhy += np.dot(dy, hs[t].T) dby += dy dh = np.dot(self.Why.T, dy) + dhnext # backprop into h dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh non-linearity dbh += dhraw dWxh += np.dot(dhraw, xs[t].T) dWhh += np.dot(dhraw, hs[t-1].T) dhnext = np.dot(self.Whh.T, dhraw) for dparam in [dWxh, dWhh, dWhy, dbh, dby]: np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients return dWxh, dWhh, dWhy, dbh, dby def loss(self, ps, targets): """loss for a sequence""" return sum(-np.log(ps[t][targets[t],0]) for t in range(self.seq_length)) def update_model(self, dWxh, dWhh, dWhy, dbh, dby): # parameter update with adagrad for param, dparam, mem in zip([self.Wxh, self.Whh, self.Why, self.bh, self.by], [dWxh, dWhh, dWhy, dbh, dby], [self.mWxh, self.mWhh, self.mWhy, self.mbh, self.mby]): mem += dparam*dparam param += -self.learning_rate*dparam/np.sqrt(mem+1e-8) # adagrad update def sample(self, h, seed_ix, n): """ sample a sequence of integers from the model h is memory state, seed_ix is seed letter from the first time step """ x = zero_init(self.vocab_size, 1) x[seed_ix] = 1 ixes = [] for t in range(n): h = np.tanh(np.dot(self.Wxh, x) + np.dot(self.Whh, h) + self.bh) y = np.dot(self.Why, h) + self.by p = np.exp(y)/np.sum(np.exp(y)) ix = np.random.choice(range(self.vocab_size), p = p.ravel()) x = zero_init(self.vocab_size,1) x[ix] = 1 ixes.append(ix) return ixes def train(self, data_reader): iter_num = 0 smooth_loss = -np.log(1.0/data_reader.vocab_size)*self.seq_length while True: if data_reader.just_started(): hprev = zero_init(self.hidden_size,1) inputs, targets = data_reader.next_batch() xs, hs, ps = self.forward(inputs, hprev) dWxh, dWhh, dWhy, dbh, dby = self.backward(xs, hs, ps, targets) loss = self.loss(ps, targets) self.update_model(dWxh, dWhh, dWhy, dbh, dby) smooth_loss = smooth_loss*0.999 + loss*0.001 hprev = hs[self.seq_length-1] if not iter_numP0: sample_ix = self.sample(hprev, inputs[0], 200) print(''.join(data_reader.ix_to_char[ix] for ix in sample_ix)) print("\n\niter :%d, loss:%f"%(iter_num, smooth_loss)) iter_num += 1 if __name__ == "__main__": seq_length = 25 data_reader = DataReader("input.txt", seq_length) rnn = SimpleRNN(hidden_size=100, vocab_size=data_reader.vocab_size,seq_length=seq_length,learning_rate=1e-1) rnn.train(data_reader)

结果:

iter :0, loss:82.395922 cdefghijklmnopqrstuvwxyzfghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwkgfghijklmnopqrstuvwwxijslmnopqrstuvwxyz abcdefghijklmnopqkstuvwdefghijklmnopqrstuvwdefghijklmnopqrstuvwdefghijklmnopqrstuvcdefghij iter :500, loss:54.569302 qrstuvwxyz abcdefghijklmnopqrstuvwdefghijklmnopqrstuvwghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz opqrstuvwxyz obcdefghijklmnopqrstuvwxyz tuvwwxdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz a iter :1000, loss:33.132522 abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwdefghijklmnopqrstuvwxyz pcrstuvwxyz abcdefghijklmnopqrstuvwxyz abyrstuvwxyz abcdefghijklmnopqrstuvwxdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwx iter :1500, loss:20.113380 cdefghijklmnopqrstuvwxxz ghrvwxz abbcefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyzstuvwxyz abcdefghijklmnopqrstuvwxyz opqrstuvwxyz abcdefghijklmnop iter :2000, loss:12.211409 yz abcdefghijklmnopqrstuvwxyz apqrstuvwxyz abcdefghijklmnopqrstuvklmnopqrstuvwxklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghij iter :2500, loss:7.415945 abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz ahqr abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz ghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz apqrstuvwxy iter :3000, loss:4.505706 wxyfghijklmnopqrstuvwxyz abdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz apqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz ayiefghijklmnopqrstuvwnhijkl iter :3500, loss:2.739425 yz abcdefghijklmnopqrstuvwxyzetuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz aaqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz apqrstuvwxyz iter :4000, loss:1.667287 abydefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyzstuvwxyz abcdefghijklmnoporstuvwxyzfghqjopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abccfghijklmnopqrstuvwghijklmnopqrstuvw iter :4500, loss:1.016354 wxyz ghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyy apqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz wpqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklm iter :5000, loss:0.621006 yz abcdefghijklmnopqrstuvwxyz acdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz aaqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz gpdefghijklmnopqrstuvwx iter :5500, loss:0.380769 abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abczefghijkcdefghijklmnopqrstuvwxyz gadmfghijklmnopqrstuvwbyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz au iter :6000, loss:0.234685 wxyz apqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz aaqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz aabcdefg iter :6500, loss:0.145761 yz abcdefghijklmnopqrstuvwxyz tuvwfgh abcdefghijklmnopqrstuvwxyz ghdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz gadefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz ab iter :7000, loss:0.091553

 

【学习来自】

karpathy/min-char-rnn.py

Character-Level LSTM

循环神经网络

 

 

 


最新回复(0)