[Swift]LeetCode1043. 分隔数组以得到最大和 | Partition Array for Maximum Sum

it2022-05-06  0

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)➤GitHub地址:https://github.com/strengthen/LeetCode➤原文地址:https://www.cnblogs.com/strengthen/p/10852127.html ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

Given an integer array A, you partition the array into (contiguous) subarrays of length at most K.  After partitioning, each subarray has their values changed to become the maximum value of that subarray.

Return the largest sum of the given array after partitioning.

Example 1:

Input: A = [1,15,7,9,2,5,10], K = 3 Output: 84 Explanation: A becomes [15,15,15,9,10,10,10]

Note:

1 <= K <= A.length <= 5000 <= A[i] <= 10^6

给出整数数组 A,将该数组分隔为长度最多为 K 的几个(连续)子数组。分隔完成后,每个子数组的中的值都会变为该子数组中的最大值。

返回给定数组完成分隔后的最大和。

示例:

输入:A = [1,15,7,9,2,5,10], K = 3 输出:84 解释:A 变为 [15,15,15,9,10,10,10]

提示:

1 <= K <= A.length <= 5000 <= A[i] <= 10^6
32ms 1 class Solution { 2 func maxSumAfterPartitioning(_ A: [Int], _ K: Int) -> Int { 3 guard A.count > 0 else { return 0 } 4 5 var dp = Array(repeating: 0, count: A.count) 6 var m = 0 7 for i in 1...A.count { 8 let j = A.count - i 9 m = max(m, A[j]) 10 if i <= K { 11 dp[j] = i * m 12 } else { 13 var result = 0 14 var localM = 0 15 for this in j..<(j + K) { 16 localM = max(localM, A[this]) 17 result = max(result, localM * (this - j + 1) + dp[this + 1]) 18 } 19 dp[j] = result 20 } 21 } 22 23 return dp[0] 24 } 25 }

Runtime: 56 ms

Memory Usage: 20.9 MB 1 class Solution { 2 func maxSumAfterPartitioning(_ A: [Int], _ K: Int) -> Int { 3 let n:Int = A.count 4 var dp:[Int] = [Int](repeating:0,count:n + 1) 5 for i in 1...n 6 { 7 var maxs:Int = 0 8 var j:Int = 1 9 while(j <= K && i - j >= 0) 10 { 11 maxs = max(maxs, A[i - j]) 12 dp[i] = max(dp[i], dp[i - j] + maxs * j) 13 j += 1 14 } 15 } 16 return dp[n] 17 } 18 }
64ms  1 class Solution { 2 func maxSumAfterPartitioning(_ A: [Int], _ K: Int) -> Int { 3 let N = A.count 4 var dp = [Int](repeating: 0, count: N) 5 for i in 0..<N { 6 var curMax = 0 7 for k in 1...K where i - k + 1 >= 0 { 8 curMax = max(curMax, A[i - k + 1]) 9 dp[i] = max(dp[i], (i >= k ? dp[i-k] : 0) + curMax * k) 10 } 11 } 12 return dp[N-1] 13 } 14 }

144ms

1 class Solution { 2 3 var memo = [Int: Int]() 4 func maxSumAfterPartitioning(_ A: [Int], _ K: Int) -> Int { 5 var sum_memo = [[Int]](repeating: [Int](repeating: 0, count: K), count: A.count) 6 for i in A.indices { 7 var curMax = A[i] 8 for j in 0..<K { 9 if i+j >= A.count { continue } 10 curMax = max(curMax, A[i+j]) 11 sum_memo[i][j] = curMax * (j+1) 12 } 13 } 14 return maxPartitioningSum(A, K, 0, A.count-1, sum_memo) 15 } 16 17 func maxPartitioningSum(_ A: [Int], _ K: Int, _ start: Int, _ end: Int, _ summemo: [[Int]]) -> Int { 18 if start > end { 19 return 0 20 } 21 22 if end - start < K { 23 return summemo[start][end-start] 24 } 25 var ans = 0 26 for i in start..<(start+K) { 27 let index = A.count*(i+1) + end 28 if memo[index] == nil { 29 memo[index] = maxPartitioningSum(A, K, i+1, end, summemo) 30 } 31 ans = max(ans,summemo[start][i-start] + memo[index]!) 32 } 33 return ans 34 } 35 }

152ms

1 class Solution { 2 func maxSumAfterPartitioning(_ A: [Int], _ K: Int) -> Int { 3 var dp = [Int](repeating: 0, count: A.count + 1) 4 dp[0] = 0 5 6 for i in 1...A.endIndex { 7 var m = A[i - 1] 8 for j in stride(from: i, through: max(i - K + 1, 1), by: -1) { 9 // for j in max(i-K+1, 1)...i { 10 m = max(m, A[j - 1]) 11 dp[i] = max(dp[i], (m * (i - j + 1)) + dp[j - 1]) 12 } 13 } 14 return dp.last! 15 } 16 }

 

转载于:https://www.cnblogs.com/strengthen/p/10852127.html


最新回复(0)