Deep Leaning 学习笔记之改善神经网络的超参数(1.4)—— 正则、dropout、梯度检验实例

it2022-05-06  18

1 正则化

1.1 L2正则化函数

def compute_cost_with_regularization(A3, Y, parameters, lambd): m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] W3 = parameters["W3"] cross_entropy_cost = compute_cost(A3, Y) L2_regularization_cost=lambd/(2*m)*(np.sum(np.square(W1))+np.sum(np.square(W2))+np.sum(np.square(W3))) cost = cross_entropy_cost + L2_regularization_cost return cost

1.2 梯度下降

def backward_propagation_with_regularization(X, Y, cache, lambd): m = X.shape[1] (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = 1./m * np.dot(dZ3, A2.T) + lambd/m*W3 db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1./m * np.dot(dZ2, A1.T) + lambd/m*W2 db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1./m * np.dot(dZ1, X.T) + lambd/m*W1 db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients

2 dropout

2.1 方程式

d3 = np.random.rand( a3.shape[0] , a3.shape[1] ) < keep_prop (生成一个随机矩阵,当d3的元素值小于keep_prop时,为1,否则为0的 0-1矩阵) a3 = np.multiply( a3 , d3 ) 也就是点乘, a3 ∗ * = = = d3 a3 = a3 / keep_prop

2.2 函数(forword + backword propagation)

2.2.1 forword propagation with dropout
def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5): np.random.seed(1) # retrieve parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1, X) + b1 A1 = relu(Z1) ### Step 1: initialize matrix D1 = np.random.rand(..., ...) D1 = np.random.rand(A1.shape[0],A1.shape[1]) ### Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold) D1 = D1<keep_prob ### Step 3: shut down some neurons of A1 A1 = np.multiply(A1,D1) ### Step 4: scale the value of neurons that haven't been shut down A1 = A1/keep_prob Z2 = np.dot(W2, A1) + b2 A2 = relu(Z2) ### Step 1: initialize matrix D2 = np.random.rand(..., ...) D2 = np.random.rand(A2.shape[0],A2.shape[1]) ### Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold) D2 = D2<keep_prob ### Step 3: shut down some neurons of A2 A2 = np.multiply(A2,D2) ### Step 4: scale the value of neurons that haven't been shut down A2 = A2/keep_prob Z3 = np.dot(W3, A2) + b3 A3 = sigmoid(Z3) cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) return A3, cache
2.2.2 backword propagation with dropout
def backward_propagation_with_dropout(X, Y, cache, keep_prob): m = X.shape[1] (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = 1./m * np.dot(dZ3, A2.T) db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) ### Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation dA2 = dA2*D2 ### Step 2: Scale the value of neurons that haven't been shut down dA2 = dA2/keep_prob dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1./m * np.dot(dZ2, A1.T) db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) ### Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation dA1 = dA1*D1 ### Step 2: Scale the value of neurons that haven't been shut down dA1 = dA1/keep_prob dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1./m * np.dot(dZ1, X.T) db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients

3 Gradient Checking 梯度检验

3.1 概念

计算 ε \varepsilon ε. 和近似梯度 g r a d a p p r o x gradapprox gradapprox θ + = θ + ε \theta^{+} = \theta + \varepsilon θ+=θ+ε θ − = θ − ε \theta^{-} = \theta - \varepsilon θ=θε J + = J ( θ + ) J^{+} = J(\theta^{+}) J+=J(θ+) J − = J ( θ − ) J^{-} = J(\theta^{-}) J=J(θ) g r a d a p p r o x = J + − J − 2 ε gradapprox = \frac{J^{+} - J^{-}}{2 \varepsilon} gradapprox=2εJ+J 通过反向传播计算梯度 g r a d grad grad计算差异: (2) d i f f e r e n c e = ∣ ∣ g r a d − g r a d a p p r o x ∣ ∣ 2 ∣ ∣ g r a d ∣ ∣ 2 + ∣ ∣ g r a d a p p r o x ∣ ∣ 2 difference = \frac {\mid\mid grad - gradapprox \mid\mid_2}{\mid\mid grad \mid\mid_2 + \mid\mid gradapprox \mid\mid_2} \tag{2} difference=grad2+gradapprox2gradgradapprox2(2) 通过如下三步进行计算: 1’. 计算分子 numerator 使用: np.linalg.norm(…)2’. 计算坟墓 denominator. 使用: np.linalg.norm(…) 两次.3’. 相除. 如果差异很小(小于 1 0 − 7 10^{-7} 107), 你可以说你计算的梯度非常正确。否则,在梯度计算中存在一些问题。

3.2 N维神经网络的梯度检查

def forward_propagation_n(X, Y, parameters): # retrieve parameters m = X.shape[1] W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1, X) + b1 A1 = relu(Z1) Z2 = np.dot(W2, A1) + b2 A2 = relu(Z2) Z3 = np.dot(W3, A2) + b3 A3 = sigmoid(Z3) # Cost logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y) cost = 1./m * np.sum(logprobs) cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) return cost, cache def backward_propagation_n(X, Y, cache): m = X.shape[1] (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = 1./m * np.dot(dZ3, A2.T) db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1./m * np.dot(dZ2, A1.T) db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1./m * np.dot(dZ1, X.T) db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients

最新回复(0)