1.2.1 数列极限的定义
(1)数列的定义对于每个n∈N+,按照某一法则,有唯一确定的实数xn与之对应,这些实数xn按照下标从小到大排序得到的序列:x1,x2,x3...,xn...
(2)数列极限的定义 当n无限增大时,对应的xn无限接近于某个确定的常数a,则称数列{xn}收敛于a,否则称数列{xn}发散。
1.2.2 数列极限的性质
(1)极限的唯一性
(2)收敛数列的有界性:如果数列收敛,那么数列一定有界。
(3)收敛数列的保号性:如果数列收敛于a,且a>0(或a<0),那么存在整数N>0,当n>N时,都有xn>0(xn < 0)。
(4)收敛数列与其子数列的关系:收敛数列的子数列也一定收敛,且极限相同。
1.2.3 函数极限的定义
(1)自变量x趋于有限值时(某个点)函数的极限
对于任意给定的正数ε,总存在正数δ,使得当x满足0 < |x - x0| < δ时,对应的函数值f(x)满足不等式|f(x) - A| < ε。
左极限、右极限类似。
(2)自变量x的绝对值无限增大且趋于无穷大时函数的极限
对于任意给定的正数ε,总存在正数X,使得当x满足不等式|x| > X时,对应的函数值f(x)都满足不等式|f(x) - A| < ε。
趋向于正无穷,负无穷类似。
1.2.4 函数极限的性质