redis源码分析——LRU

it2022-05-05  131

文章目录

数据结构数据淘汰机制淘汰策略淘汰流程 几点疑惑

数据结构

typedef struct redisObject { unsigned type:4; unsigned encoding:4; unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or * LFU data (least significant 8 bits frequency * and most significant 16 bits access time). */ int refcount; void *ptr; } robj struct redisServer { ... unsigned int lruclock; /* Clock for LRU eviction * ... }

redisObject中的lru和redisServer中的lruclock都是以秒为单位的绝对时间,lruclock表示当前时间,lru表示上次访问的时间。redis中用这两个时间差做为数据淘汰的判断依据。

int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) { ... unsigned long lruclock = getLRUClock(); atomicSet(server.lruclock,lruclock); ... }

在serverCron函数中会定时更新server.lruclock;而robj中的lru则会在对象创建或每次访问、修改时更新成当时的server.lruclock。

数据淘汰机制

淘汰策略

Redis提供了以下几种数据淘汰策略:

volatile-lru:从设置过期的数据集中淘汰最少使用的数据;volatile-ttl:从设置过期的数据集中淘汰即将过期的数据(离过期时间最近);volatile-random:从设置过期的数据集中随机选取数据淘汰;allkeys-lru:从所有 数据集中选取使用最少的数据;allkeys-random:从所有数据集中任意选取数据淘汰;no-envicition:不进行淘汰;

淘汰流程

redis每执行一个命令,都会检查是否需要淘汰数据,前提是要在配置文件中设置maxmemory。

int processCommand(client *c) { ... /* Handle the maxmemory directive. * * First we try to free some memory if possible (if there are volatile * keys in the dataset). If there are not the only thing we can do * is returning an error. */ if (server.maxmemory) { int retval = freeMemoryIfNeeded(); /* freeMemoryIfNeeded may flush slave output buffers. This may result * into a slave, that may be the active client, to be freed. */ if (server.current_client == NULL) return C_ERR; /* It was impossible to free enough memory, and the command the client * is trying to execute is denied during OOM conditions? Error. */ if ((c->cmd->flags & CMD_DENYOOM) && retval == C_ERR) { flagTransaction(c); addReply(c, shared.oomerr); return C_OK; } } ... }

在processCommand函数中调用freeMemoryIfNeeded进行淘汰数据。该函数中会计算出redis目前占用的内存总数,但会排除两部分内存:

从节点的输出缓冲区的内存AOF缓冲区的内存

然后根据淘汰策略,循环淘汰数据,直到满足内存要求。这里只分析volatile-lru、volatile-ttl以及allkeys-lru三种策略,其它几种随机策略都比较简单。这三种策略中会调用evictionPoolPopulate进行数据淘汰。

void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) { //若淘汰策略为volatile-lru或volatile-ttl,则sampledict=db->expires,否则sampledict=db->dict int j, k, count; dictEntry *samples[server.maxmemory_samples]; //从sampledict中随机挑选出maxmemory_samples个key,默认为5个,放到samples中 count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples); for (j = 0; j < count; j++) { unsigned long long idle; sds key; robj *o; dictEntry *de; de = samples[j]; key = dictGetKey(de); /* If the dictionary we are sampling from is not the main * dictionary (but the expires one) we need to lookup the key * again in the key dictionary to obtain the value object. */ if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) { if (sampledict != keydict) de = dictFind(keydict, key); o = dictGetVal(de); } /* Calculate the idle time according to the policy. This is called * idle just because the code initially handled LRU, but is in fact * just a score where an higher score means better candidate. */ if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) { idle = estimateObjectIdleTime(o); } else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { /* When we use an LRU policy, we sort the keys by idle time * so that we expire keys starting from greater idle time. * However when the policy is an LFU one, we have a frequency * estimation, and we want to evict keys with lower frequency * first. So inside the pool we put objects using the inverted * frequency subtracting the actual frequency to the maximum * frequency of 255. */ idle = 255-LFUDecrAndReturn(o); } else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) { /* In this case the sooner the expire the better. */ idle = ULLONG_MAX - (long)dictGetVal(de); } else { serverPanic("Unknown eviction policy in evictionPoolPopulate()"); } /* Insert the element inside the pool. * First, find the first empty bucket or the first populated * bucket that has an idle time smaller than our idle time. */ k = 0; while (k < EVPOOL_SIZE && pool[k].key && pool[k].idle < idle) k++; if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) { /* Can't insert if the element is < the worst element we have * and there are no empty buckets. */ continue; } else if (k < EVPOOL_SIZE && pool[k].key == NULL) { /* Inserting into empty position. No setup needed before insert. */ } else { /* Inserting in the middle. Now k points to the first element * greater than the element to insert. */ if (pool[EVPOOL_SIZE-1].key == NULL) { /* Free space on the right? Insert at k shifting * all the elements from k to end to the right. */ /* Save SDS before overwriting. */ sds cached = pool[EVPOOL_SIZE-1].cached; memmove(pool+k+1,pool+k, sizeof(pool[0])*(EVPOOL_SIZE-k-1)); pool[k].cached = cached; } else { /* No free space on right? Insert at k-1 */ k--; /* Shift all elements on the left of k (included) to the * left, so we discard the element with smaller idle time. */ sds cached = pool[0].cached; /* Save SDS before overwriting. */ if (pool[0].key != pool[0].cached) sdsfree(pool[0].key); memmove(pool,pool+1,sizeof(pool[0])*k); pool[k].cached = cached; } } /* Try to reuse the cached SDS string allocated in the pool entry, * because allocating and deallocating this object is costly * (according to the profiler, not my fantasy. Remember: * premature optimizbla bla bla bla. */ int klen = sdslen(key); if (klen > EVPOOL_CACHED_SDS_SIZE) { pool[k].key = sdsdup(key); } else { memcpy(pool[k].cached,key,klen+1); sdssetlen(pool[k].cached,klen); pool[k].key = pool[k].cached; } pool[k].idle = idle; pool[k].dbid = dbid; } } /* Given an object returns the min number of milliseconds the object was never * requested, using an approximated LRU algorithm. */ unsigned long long estimateObjectIdleTime(robj *o) { unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) { return (lruclock - o->lru) * LRU_CLOCK_RESOLUTION; } else { return (lruclock + (LRU_CLOCK_MAX - o->lru)) * LRU_CLOCK_RESOLUTION; } } struct evictionPoolEntry { unsigned long long idle; /* Object idle time (inverse frequency for LFU) */ sds key; /* Key name. */ sds cached; /* Cached SDS object for key name. */ int dbid; /* Key DB number. */ };

这里用到了一个淘汰池,长度为16,池内根据lru计算的空闲时间从小到大排序。随机挑选出来的每个key,若满足以下任一条件则会放入池中:

池还未填满空闲时间比池中已有key的空闲时间大

然后倒序遍历淘汰池,删除空闲时间最大的对象。

redis中的lru淘汰机制不是严格地按照空闲时间淘汰,而是采用了一种近似策略,随机选取一些对象,淘汰其中空闲时间最大的,通过引入淘汰池保存上一次挑选的历史数据,使得结果更接近全局淘汰,同时又节省了cpu资源。

几点疑惑

evictionPoolEntry淘汰池中的cached字段,作用不太清楚evictionPoolEntry保存了空闲时间idle,该字段一旦写入就不再更新,即使后来该key对应的对象被访问了一次,其实际空闲时间会得到更新,但idle还是原来的值。

最新回复(0)