maskrcnn windows 上C++做预测

it2022-05-05  126

我自己做下记录

keras 训练代码 

https://github.com/matterport/Mask_RCNN

1.keras 模型转 .pb

import tensorflow as tf from keras import backend as K from tensorflow.python.framework import graph_util model_keras = model.keras_model # All new operations will be in test mode from now on. K.set_learning_phase(0) # Create output layer with customized names num_output = 7 pred_node_names = ["detections", "mrcnn_class", "mrcnn_bbox", "mrcnn_mask", "rois", "rpn_class", "rpn_bbox"] pred_node_names = ["output_" + name for name in pred_node_names] pred = [tf.identity(model_keras.outputs[i], name=pred_node_names[i]) for i in range(num_output)] sess = K.get_session() # Get the object detection graph od_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names) model_dirpath = os.path.dirname("model/") if not os.path.exists(model_dirpath): os.mkdir(model_dirpath) filename = 'seg_model.pb' pb_filepath = os.path.join(model_dirpath, filename) print('Saving frozen graph {} ...'.format(os.path.basename(pb_filepath))) frozen_graph_path = pb_filepath with tf.gfile.GFile(frozen_graph_path, 'wb') as f: f.write(od_graph_def.SerializeToString())

 

 

2.windows 调用代码

#include "pch.h" #include <iostream> #include <tchar.h> #define COMPILER_MSVC #define NOMINMA //#include "stdafx.h" #include <iostream> //#include <Eigen\\Dense> #include "tensorflow/core/public/session.h" #include "tensorflow/cc/ops/standard_ops.h" using namespace tensorflow; #define COMPILER_MSVC #define NOMINMAX #define _SCL_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #include <fstream> #include <utility> #include <vector> #include <iostream> #include <sstream> #include <string> #include <tensorflow/cc/ops/array_ops.h> #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/default_device.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/command_line_flags.h" #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include<vector> using namespace cv; // These are all common classes it's handy to reference with no namespace. using tensorflow::Flag; using tensorflow::Tensor; using tensorflow::Status; using tensorflow::string; using tensorflow::int32; using namespace std; // ensure TensorFlow C++ build OK //int main() { //    printf("Hello World from Tensorflow C libnrary version %s\n", TF_Version()); //    tensorflow::Session* session = tensorflow::NewSession(tensorflow::SessionOptions()); //    return 0; //} struct maskBox {     float fScore;     int x1;     int x2;     int y1;     int y2;     int area;     vector<cv::Point> vecContourPt;     int iClass; }; //升序排列 bool cmpScore(maskBox lsh, maskBox rsh) {     if (lsh.fScore < rsh.fScore)         return true;     else         return false; } void nms(vector<maskBox> &boundingBox_, const float overlap_threshold, string modelname = "Union") {     if (boundingBox_.empty()) {         return;     }     //对各个候选框根据score的大小进行升序排列     sort(boundingBox_.begin(), boundingBox_.end(), cmpScore);     float IOU = 0;     float maxX = 0;     float maxY = 0;     float minX = 0;     float minY = 0;     vector<int> vPick;     int nPick = 0;     multimap<float, int> vScores;   //存放升序排列后的score和对应的序号     const int num_boxes = boundingBox_.size();     vPick.resize(num_boxes);     for (int i = 0; i < num_boxes; ++i) {         vScores.insert(pair<float, int>(boundingBox_[i].fScore, i));     }     while (vScores.size() > 0) {         int last = vScores.rbegin()->second;  //反向迭代器,获得vScores序列的最后那个序列号         vPick[nPick] = last;         nPick += 1;         auto iter = vScores.end();         iter--;         vScores.erase(iter);         for (multimap<float, int>::iterator it = vScores.begin(); it != vScores.end();) {             int it_idx = it->second;             maxX = max(boundingBox_.at(it_idx).x1, boundingBox_.at(last).x1);             maxY = max(boundingBox_.at(it_idx).y1, boundingBox_.at(last).y1);             minX = min(boundingBox_.at(it_idx).x2, boundingBox_.at(last).x2);             minY = min(boundingBox_.at(it_idx).y2, boundingBox_.at(last).y2);             //转换成了两个边界框相交区域的边长             maxX = ((minX - maxX + 1) > 0) ? (minX - maxX + 1) : 0;             maxY = ((minY - maxY + 1) > 0) ? (minY - maxY + 1) : 0;             //求交并比IOU             IOU = (maxX * maxY) / (boundingBox_.at(it_idx).area + boundingBox_.at(last).area - IOU);             if (IOU > overlap_threshold) {                 it = vScores.erase(it++);    //删除交并比大于阈值的候选框,erase返回删除元素的下一个元素             }             else {                 it++;             }                  }              }     vPick.resize(nPick);     vector<maskBox> tmp_;     tmp_.resize(nPick);     for (int i = 0; i < nPick; i++) {         tmp_[i] = boundingBox_[vPick[i]];     }     boundingBox_ = tmp_;      } int main(int argc, char* argv[]) {     cv::Mat inputMat;      inputMat = cv::imread("F:\\data\\segdata\\test\\16378\\16378.jpg", CV_LOAD_IMAGE_COLOR); //    cvtColor(inputMat, inputMat, CV_BGR2GRAY);     int TF_MASKRCNN_IMG_WIDTHHEIGHT = 768;     cv::Scalar TF_MASKRCNN_MEAN_PIXEL(123.7, 116.8, 103.9); //    float TF_MASKRCNN_IMAGE_METADATA[38] = { 0, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT, 3, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT, 3, 0, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT,1, 0, 0 };     float TF_MASKRCNN_IMAGE_METADATA[38] = { 0, inputMat.rows, inputMat.cols, 3, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT, 3, 17, 0, TF_MASKRCNN_IMG_WIDTHHEIGHT,TF_MASKRCNN_IMG_WIDTHHEIGHT, 0.627, 0 };     cv::Mat dest = cv::Mat(inputMat.size(), CV_8UC3);     dest = inputMat.clone();     //Resizr to square with max dim, so we can resize it to 256x256     int largestDim = inputMat.size().height > inputMat.size().width ? inputMat.size().height : inputMat.size().width;     cv::Mat squareInputMat(cv::Size(largestDim, largestDim), CV_8UC3);     int leftBorder = (largestDim - inputMat.size().width) / 2;     int topBorder = (largestDim - inputMat.size().height) / 2;     cv::copyMakeBorder(inputMat, squareInputMat, topBorder, largestDim - (inputMat.size().height + topBorder), leftBorder, largestDim - (inputMat.size().width + leftBorder), cv::BORDER_CONSTANT, cv::Scalar(0));     cv::Mat resizedInputMat(cv::Size(TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT), CV_8UC3);     cv::resize(squareInputMat, resizedInputMat, resizedInputMat.size(), 0, 0);     cv::Mat dst = resizedInputMat.clone();     // Need to "mold_image" like in mask rcnn     cv::Mat moldedInput(resizedInputMat.size(), CV_32FC3);     resizedInputMat.convertTo(moldedInput, CV_32FC3);     cv::subtract(moldedInput, TF_MASKRCNN_MEAN_PIXEL, moldedInput);          tensorflow::Tensor inputTensor(tensorflow::DT_FLOAT, { 1, moldedInput.size().height, moldedInput.size().width, 3 }); // single image instance with 3 channels     float_t *p = inputTensor.flat<float_t>().data();     cv::Mat inputTensorMat(moldedInput.size(), CV_32FC3, p);     moldedInput.convertTo(inputTensorMat, CV_32FC3);     int TF_MASKRCNN_IMAGE_METADATA_LENGTH = 38;     // Copy the TF_MASKRCNN_IMAGE_METADATA data into a tensor     tensorflow::Tensor inputMetadataTensor(tensorflow::DT_FLOAT, { 1, TF_MASKRCNN_IMAGE_METADATA_LENGTH });     auto inputMetadataTensorMap = inputMetadataTensor.tensor<float, 2>();     for (int i = 0; i < TF_MASKRCNN_IMAGE_METADATA_LENGTH; ++i) {         inputMetadataTensorMap(0, i) = TF_MASKRCNN_IMAGE_METADATA[i];     }     // for specific 1920x1280 images     auto input_anchors = tensorflow::Tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({ 1,147312,4 }));     auto anchors_API = input_anchors.tensor<float, 3>();     //input_anchors.flat<float_t>()(0, 0, 0) = 1.111111;     string fileName = "F:\\gc\\maskrcnntest2017\\maskrcnntest\\x64\\Release\\model\\anchors.txt";     fstream in;     in.open(fileName.c_str(), ios::in);     if (!in.is_open()) {         cout << "Can not find " << fileName << endl;         system("pause");     }     string buff;     int i = 0; //line i     while (getline(in, buff)) {         vector<float> nums;         // string->char *         char *s_input = (char *)buff.c_str();         const char * split = ",";         char *p2 = strtok(s_input, split);         double a;         while (p2 != NULL) {             // char * -> int             a = atof(p2);             //cout << a << endl;             nums.push_back(a);             p2 = strtok(NULL, split);         }//end while         for (int b = 0; b < nums.size(); b++) {             anchors_API(0, i, b) = nums[b];         }//end for         i++;     }//end while     in.close();     string root_dir = "";     string graph = "F:\\gc\\maskrcnntest2017\\maskrcnntest\\x64\\Release\\model\\seg_model.pb";     // First we load and initialize the model.     string graph_path = tensorflow::io::JoinPath(root_dir, graph);     tensorflow::GraphDef graph_def;     tensorflow::SessionOptions options;     std::unique_ptr<tensorflow::Session> session(tensorflow::NewSession(options));     Status load_graph_status =         ReadBinaryProto(tensorflow::Env::Default(), graph_path, &graph_def);     //for (int n = 0; n < graph_def.node_size(); ++n) {     //    graph_def.mutable_node(n)->clear_device();     //}     //tfSession.reset(tensorflow::NewSession(tensorflow::SessionOptions()));     TF_CHECK_OK(session->Create(graph_def));     //Status session_create_status = session->Create(graph_def);     //Status load_graph_status = LoadGraph(graph_path, &session);     if (!load_graph_status.ok()) {         LOG(ERROR) << "LoadGraph ERROR!!!!" << load_graph_status;         cout << load_graph_status << endl;         return -1;     }     // Actually run the image through the model.     std::vector<Tensor> outputs;     tensorflow::Status run_status = session->Run({ { "input_image", inputTensor },{ "input_image_meta", inputMetadataTensor },{ "input_anchors",input_anchors } },     { "output_detections", "output_mrcnn_class", "output_mrcnn_bbox", "output_mrcnn_mask",         "output_rois", "output_rpn_class", "output_rpn_bbox" },         {},         &outputs);     if (!run_status.ok()) {         LOG(ERROR) << "Running model failed: " << run_status;         return -1;     }     //if (outputs[3].shape().dims() != 5 || outputs[3].shape().dim_size(4) != 2)     //{     //    throw std::runtime_error("Expected mask dimensions to be [1,100,28,28,2] but got: " + outputs[3].shape().DebugString());     //}     vector<maskBox> vecBox;     auto detectionsMap = outputs[0].tensor<float, 3>();     auto mask = outputs[3].tensor<float, 5>();     for (int i = 0; i < outputs[3].shape().dim_size(1); ++i)     {         auto y1 = detectionsMap(0, i, 0) * TF_MASKRCNN_IMG_WIDTHHEIGHT;         float x1 = detectionsMap(0, i, 1) * TF_MASKRCNN_IMG_WIDTHHEIGHT;         auto y2 = detectionsMap(0, i, 2) * TF_MASKRCNN_IMG_WIDTHHEIGHT;         float x2 = detectionsMap(0, i, 3) * TF_MASKRCNN_IMG_WIDTHHEIGHT;         auto scoreAtI = detectionsMap(0, i, 5); // detectionsMap(0, i, 1) 0.8862123; detectionsMap(0, i, 3) 0.91774625           auto detectedClass = detectionsMap(0, i, 4);         cout << x1 << " " << x2 << " " << y1 << " " << y2 << " " << scoreAtI << endl;         maskBox stMaskBox;         stMaskBox.fScore = scoreAtI;         stMaskBox.iClass = detectedClass;         auto walala = detectionsMap(0, i, 6);         auto maskHeight = (y2 - y1), maskWidth = (x2 - x1);         if (maskHeight != 0 && maskWidth != 0) {             // Pointer arithmetic             const int i0 = 0, /* size0 = (int)outputs[3].shape().dim_size(1), */ i1 = i,                 size1 = (int)outputs[3].shape().dim_size(1),                 h = (int)outputs[3].shape().dim_size(2),                 w = (int)outputs[3].shape().dim_size(3);                  int iClassNum = (int)outputs[3].shape().dim_size(4);         //    int pointerLocationOfI = (i0*size1 + i1)*size2;             int pointerLocationOfI = h * w * iClassNum * i;             float_t *maskPointer = outputs[3].flat<float_t>().data();             // The shape of the detection is [28,28,2], where the last index is the class of interest.             // We'll extract index 1 because it's the toilet seat.             cv::Mat initialMask(cv::Size(h, w), CV_32FC(iClassNum), &maskPointer[pointerLocationOfI]); // CV_32FC2 because I know size4 is 2             cv::Mat detectedMask(initialMask.size(), CV_32FC1);             cv::extractChannel(initialMask, detectedMask, (int)detectedClass);             // Convert to B&W             cv::Mat binaryMask(detectedMask.size(), CV_8UC1);             cv::threshold(detectedMask, binaryMask, 0.5, 255, cv::THRESH_BINARY);             // First scale and offset in relation to TF_MASKRCNN_IMG_WIDTHHEIGHT             cv::Mat scaledDetectionMat(maskHeight, maskWidth, CV_8UC1);             cv::resize(binaryMask, scaledDetectionMat, scaledDetectionMat.size(), 0, 0);             vector<vector<cv::Point>> contours;             scaledDetectionMat.convertTo(scaledDetectionMat, CV_8UC1);             findContours(scaledDetectionMat, contours, CV_RETR_TREE, CHAIN_APPROX_NONE);             int iMaxArea = 0;             int iNum = 0;             for (int c = 0; c < contours.size(); c++)             {                 if (contours[c].size() == 0) continue;                 double area = contourArea(contours[c]);                 //        printf("area:%f \n", area);                 if (iMaxArea > area)                 {                     iNum = c;                 }             }             cv::Mat scaledOffsetMat(moldedInput.size(), CV_8UC1, cv::Scalar(0));             scaledDetectionMat.copyTo(scaledOffsetMat(cv::Rect(x1, y1, maskWidth, maskHeight)));             cvtColor(scaledDetectionMat, scaledDetectionMat, CV_GRAY2BGR);             int ilen = contours[iNum].size();             for (int k = 0; k < ilen; k++)             {                 Point pt = contours[iNum][k];                 Point org(x1, y1);                 pt = org+pt;                 contours[iNum][k] = pt;             }             //Scalar color(rand() / 255, rand() / 255, rand() / 255, rand() / 255);             //drawContours(dst, contours, iNum, color);             //Rect rect(x1, y1, x2 - x1, y2 - y1);             //rectangle(dst, rect, color, 1);         //    string strText = to_string(stBox.iClass) + string(" ") + to_string(stBox.fScore);         //    putText(dst, strText, Point(stBox.x1, stBox.y1), 1, 1, color);             stMaskBox.x1 = x1;             stMaskBox.x2 = x2;             stMaskBox.y1 = y1;             stMaskBox.y2 = y2;             stMaskBox.area = (x2 - x1)*(y2 - y1);             stMaskBox.vecContourPt = contours[iNum];             vecBox.push_back(stMaskBox);         }         /**/     }     nms(vecBox, 0.3, "Union");     for (int i = 0; i < vecBox.size(); i++)     {         maskBox stBox;         stBox = vecBox[i];         vector<vector<cv::Point>> contours;         contours.push_back(stBox.vecContourPt);         Scalar color(rand() / 255, rand() / 255, rand() / 255, rand() / 255);         drawContours(dst, contours, 0, color);         Rect rect(stBox.x1, stBox.y1, stBox.x2-stBox.x1, stBox.y2-stBox.y1);         rectangle(dst, rect, color, 1);         string strText = to_string(stBox.iClass) + string(" ") + to_string(stBox.fScore);         putText(dst, strText, Point(stBox.x1, stBox.y1), 2, 0.5, color);     }     cv::imshow("Detection Result", dst);     cv::waitKey(0);     //cv::imwrite("C:\\", dest);     return 0; }

3.


最新回复(0)